194 research outputs found

    Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications

    Get PDF
    Natural and largely abundant macromolecules such as carbohydrates have become a center point of interest for the polymer community, mostly due to their more environment-friendly nature and excellent capacity to bind to proteins found in the plant and animal reigns alike. The binding between saccharide units and proteins is key to plethora of biological events, therefore a fundamental understanding of this mechanism could open doors towards a new age of biomedical advances. Synthetic macromolecules bearing saccharide units (i.e. glycopolymers) are of particular interest because they can be produced on a controlled fashion with tailored molecular weight, structure, functionality and even sequencing. Vast improvements have been made for the fabrication of sequence-controlled glycopolymers, thanks in part to new monomer synthesis routes and to the recent developments in controlled polymerization techniques. This review article aims at providing the reader with a comprehensive guide on the synthesis of glycomonomers as well as on polymerization techniques for the production of block-type glycopolymers

    Tendance, degrés du fait et problèmes de diffusion

    Get PDF

    Orality And Writing Among The Bugis

    Get PDF
    The phrase "oral literature" is most often used to indicate the forms of expression to be found either in societies without writing or in parallel with a great tradition of written literature. In both cases a comparison, indeed an opposition, seems to be implied, at the base of which really lies a particular concept of written literature. This concept is very much at risk of being unconsciously influenced by features which belong only to the written literature of certain "great civilisations," in particular modern Western civilisation. It therefore seems necessary first to look briefly at these features before tackling the case of the Bugis where oral expression coexists with written expression; this written expression is important, but has notably distinct characteristics

    Cylindrical Zwitterionic Particles via Interpolyelectrolyte Complexation on Molecular Polymer Brushes

    Get PDF
    The fabrication of macromolecular architectures with high aspect ratio and well‐defined internal and external morphologies remains a challenge. The combination of template chemistry and self‐assembly concepts to construct peculiar polymer architectures via a bottom‐up approach is an emerging approach. In this study, a cylindrical template—namely a core–shell molecular polymer brush—and linear diblock copolymers (DBCP) associate to produce high aspect ratio polymer particles via interpolyelectrolyte complexation. Induced, morphological changes are studied using cryogenic transmission electron and atomic force microscopy, while the complexation is further followed by isothermal titration calorimetry and ξ‐potential measurements. Depending on the nature of the complexing DBCP, distinct morphological differences can be achieved. While polymers with a non‐ionic block lead to internal compartmentalization, polymers featuring zwitterionic domains lead to a wrapping of the brush template

    Recherche d'une méthode d'analyse ethnologique de la cuisine

    Get PDF

    Self-assembly of diblock molecular polymer brushes in the spherical confinement of nanoemulsion droplets

    Get PDF
    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilised oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially-stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes.Australian Research Council. Grant Number: DE180100007 endowed professorship. Grant Number: 2016‐2022 German Research Foundation (DFG). Grant Numbers: 2017‐2022, 37692067

    Scalable Fabrication of Reversible Antifouling Block Copolymer Coatings via Adsorption Strategies

    Get PDF
    Fouling remains a widespread challenge as its nonspecific and uncontrollable character limits the performance of materials and devices in numerous applications. Although many promising antifouling coatings have been developed to reduce or even prevent this undesirable adhesion process, most of them suffer from serious limitations, specifically in scalability. Whereas scalability can be particularly problematic for covalently bound antifouling polymer coatings, replacement by physisorbed systems remains complicated as it often results in less effective, low-density films. In this work, we introduce a two-step adsorption strategy to fabricate high-density block copolymer-based antifouling coatings on hydrophobic surfaces, which exhibit superior properties compared to one-step adsorbed coatings. The obtained hybrid coating manages to effectively suppress the attachment of both lysozyme and bovine serum albumin, which can be explained by its dense and homogeneous surface structure as well as the desired polymer conformation. In addition, the intrinsic reversibility of the adhered complex coacervate core micelles allows for the successful triggered release and regeneration of the hybrid coating, resulting in full recovery of its antifouling properties. The simplicity and reversibility make this a unique and promising antifouling strategy for large-scale underwater applications

    Toward Effective and Adsorption-Based Antifouling Zipper Brushes:Effect of pH, Salt, and Polymer Design

    Get PDF
    The undesired spontaneous deposition and accumulation of matter on surfaces, better known as fouling, is a problematic and often inevitable process plaguing a variety of industries. This detrimental process can be reduced or even prevented by coating surfaces with a dense layer of end-grafted polymer: a polymer brush. Producing such polymer brushes via adsorption presents a very attractive technique, as large surfaces can be coated in a quick and simple manner. Recently, we introduced a simple and scalable two-step adsorption strategy to fabricate block copolymer-based antifouling coatings on hydrophobic surfaces. This two-step approach involved the initial adsorption of hydrophobic-charged diblock copolymer micelles acting as a primer, followed by the complexation of oppositely charged-antifouling diblock copolymers to form the antifouling brush coating. Here, we significantly improve this adsorption-based zipper brush via systematic tuning of various parameters, including pH, salt concentration, and polymer design. This study reveals several key outcomes. First of all, increasing the hydrophobic/hydrophilic block ratio of the anchoring polymeric micelles (i.e., decreasing the hydrophilic corona) promotes adsorption to the surface, resulting in the most densely packed, uniform, and hydrophilic primer layers. Second, around a neutral pH and at a low salt concentration (1 mM), complexation of the weak polyelectrolyte (PE) blocks results in brushes with the best antifouling efficacy. Moreover, by tuning the ratio between these PE blocks, the brush density can be increased, which is also directly correlated to the antifouling performance. Finally, switching to different antifouling blocks can increase the internal density or strengthen the bound hydration layer of the brush, leading to an additional enhancement of the antifouling properties (>99% lysozyme, 87% bovine serum albumin)

    Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives

    Get PDF
    It is well-known that the phase behavior and physicochemical and adhesive properties of complex coacervates are readily tuneable with the salt concentration of the medium. For toxicity reasons, however, the maximum applicable salt concentration in biomedical applications is typically low. Consequently, other strategies must be implemented in order to optimize the properties of the resulting complex coacervates. In this work, the effect of the charge density of a strong polyanion on the properties of complex coacervates was studied. To control this charge density, statistical anionic/charge-neutral hydrophilic copolymers were synthesized by means of an elegant protection/deprotection strategy and subsequently complexed with a strong polycation. The resulting complexes were observed to have an increasing water content as well as faster relaxation dynamics, with either increasing salt concentration or decreasing charge density. Time-salt and time-salt-charge density superpositions could be performed and showed that the relaxation mechanism of the complex coacervates remained unchanged. When the charge density was decreased, lower salt concentration complexes became suitable for viscoelastic adhesion with improved injectability. Such complex coacervates are promising candidates for injectable biomedical adhesives.</p

    One-Pot Synthesis of Strong Anionic/Charge-Neutral Amphiphilic Block Copolymers

    Get PDF
    Despite the ever more versatile polymerization techniques that are becoming available, the synthesis of macromolecules with tailored functionalities can remain a lengthy endeavor. This becomes more conspicuous when the implementation of incompatible chemistries (i.e., strong polyelectrolytes) within sequence-controlled polymers is desired, often requiring (i) polymerization, (ii) chain extension, and (iii) postpolymerization modification. Herein, we explore the production of strong anionic/charge-neutral block copolymers (BCPs) in a one-pot fashion. This straightforward three-step process includes the synthesis of a macroinitiator and chain extension via rapid and efficient photomediated atom transfer radical polymerization, followed by in situ deprotection to expose the polyanionic domains. The resulting BCPs, which are strong amphiphiles by nature, are capable of self-assembly in aqueous media, as evidenced by dynamic light scattering, small-angle X-ray scattering, ζ-potential measurements, and transmission electron microscopy. We further demonstrate the versatility of our methodology by producing several BCPs through sampling of a single reaction mixture, enabling the straightforward production of strong polymer amphiphiles.</p
    corecore