983 research outputs found

    Grand Valley Helps Teachers Grow Earth’s Future Stewards

    Get PDF

    Letter From the Editor

    Get PDF

    As an Educator: Remembering A Michigan President

    Get PDF

    Initial Results from CALIPSO

    Get PDF
    CALIPSO will carry the first polarization lidar in orbit, along with infrared and visible passive imagers, and will fly in formation as part of the Afternoon Constellation (A-train). The acquisition of observations which are simultaneous and coincident with observations from other instruments of the A-train will allow numerous synergies to be realized from combining CALIPSO observations with observations from other platforms. In particular, cloud observations from the CALIPSO lidar and the CloudSat radar will complement each other, together encompassing the variety of clouds found in the atmosphere, from thin cirrus to deep convective clouds. CALIPSO has been developed within the framework of a collaboration between NASA and CNES and is currently scheduled to launch, along with the CloudSat satellite, in spring 2006. This paper will present an overview of the CALIPSO mission, including initial results

    Comparison of cloud statistics from spaceborne lidar systems

    Get PDF
    The distribution of clouds in a vertical column is assessed on the global scale through analysis of lidar measurements obtained from three spaceborne lidar systems: LITE (Lidar In-space Technology Experiment, NASA), GLAS (Geoscience Laser Altimeter System, NASA), and CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization). Cloud top height (CTH) is obtained from the LITE profiles based on a simple algorithm that accounts for multilayer cloud structures. The resulting CTH results are compared to those obtained by the operational algorithms of the GLAS and CALIOP instruments. Based on our method, spaceborne lidar data are analyzed to establish statistics on the cloud top height. The resulting columnar results are used to investigate the inter-annual variability in the lidar cloud top heights. Statistical analyses are performed for a range of CTH (high, middle, low) and latitudes (polar, middle latitude and tropical). Probability density functions of CTH are developed. Comparisons of CTH developed from LITE, for 2 weeks of data in 1994, with ISCCP (International Satellite Cloud Climatology Project) cloud products show that the cloud fraction observed from spaceborne lidar is much higher than that from ISCCP. Another key result is that ISCCP products tend to underestimate the CTH of optically thin cirrus clouds. Significant differences are observed between LITE-derived cirrus CTH and both GLAS and CALIOP-derived cirrus CTH. Such a difference is due primarily to the lidar signal-to-noise ratio that is approximately a factor of 3 larger for the LITE system than for the other lidars. A statistical analysis for a full year of data highlights the influence of both the Inter-Tropical Convergence Zone and polar stratospheric clouds

    Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa

    Get PDF
    International audienceThe radiative heating rate due to mineral dust over West Africa is investigated using the radiative code STREAMER, as well as remote sensing and in situ observations gathered during the African Monsoon Multidisciplinary Analysis Special Observing Period (AMMA SOP). We focus on two days (13 and 14 June 2006) of an intense and long lasting episode of dust being lifted in remote sources in Chad and Sudan and transported across West Africa in the African easterly jet region, during which airborne operations were conducted at the regional scale, from the southern fringes of the Sahara to the Gulf of Guinea. Profiles of heating rates are computed from airborne LEANDRE 2 (Lidar Embarqué pour l'étude de l'Atmosphère: Nuages Dynamique, Rayonnement et cycle de l'Eau) and space-borne CALIOP (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations using two mineral dust model constrained by airborne in situ data and ground-based sunphotometer obtained during the campaign. Complementary spaceborne observations (from the Moderate-resolution Imaging Spectroradiometer-MODIS) and in-situ observations such as dropsondes are also used to take into account the infrared contribution of the water vapour. We investigate the variability of the heating rate on the vertical within a dust plume, as well as the contribution of both shortwave and longwave radiation to the heating rate and the radiative heating rate profiles of dust during daytime and nighttime. The sensitivity of the so-derived heating rate is also analyzed for some key variables for which the associated uncertainties may be large. During daytime, the warming associated with the presence of dust was found to be between 1.5 K day−1 and 4 K day−1, on average, depending on altitude and latitude. Strong warming (i.e. heating rates as high as 8 K day−1) was also observed locally in some limited part of the dust plumes. The uncertainty on the heating rate retrievals in the optically thickest part of the dust plume was estimated to be between 0.5 and 1.4 K day−1. During nighttime much smaller values of heating/cooling are retrieved (less than ±1 K day−1). Furthermore, cooling is observed as the result of the longwave forcing in the dust layer, while warming is observed below the dust layer, in the monsoon layer

    Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Get PDF
    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud‐Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high‐resolution regional chemical transport modeling (WRF‐Chem) combined with high‐resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires

    On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    Get PDF
    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B

    A variational approach for retrieving ice cloud properties from infrared measurements: application in the context of two IIR validation campaigns

    Get PDF
    Cirrus are cloud types that are recognized to have a strong impact on the Earth-atmosphere radiation balance. This impact is however still poorly understood, due to the difficulties in describing the large variability of their properties in global climate models. Consequently, numerous airborne and space borne missions have been dedicated to their study in the last decades. The satellite constellation A-Train has proven to be particularly helpful to study cirrus on global scale due to such instruments as the Infrared Imaging Radiometer (IIR), which shows great sensitivity to the radiative and microphysical properties of these clouds. This study presents an algorithm that uses thermal infrared measurements to retrieve the optical thickness of cirrus and the effective size of their ice crystals. This algorithm is based on an optimal estimation scheme, which possesses the advantage of attributing precise uncertainties to the retrieved parameters. Two IIR airborne validation campaigns have been chosen as case studies. It is observed that optical thicknesses could be accurately retrieved but that large uncertainties may occur on the effective diameters. Strong agreements have been found between the products of our algorithm when separately applied to the measurements of IIR and of the airborne radiometer CLIMAT-AV, which comforts the results of previous validations of IIR level-1 measurements. Comparisons with in situ observations and with operational products of IIR also show confidence in our results. However, we have found that the quality of our retrievals can be strongly impacted by uncertainties related to the choice of a pristine crystal model and by poor constraints on the properties of possible liquid cloud layers underneath cirrus. Simultaneous retrievals of liquid clouds radiative and microphysical properties or the use of different ice crystal models should therefore be considered to improve the quality of the results
    corecore