8 research outputs found

    Human mobility from theory to practice: Data, models and applications

    Get PDF
    The inclusion of tracking technologies in personal devices opened the doors to the analysis of large sets of mobility data like GPS traces and call detail records. This tutorial presents an overview of both modeling principles of human mobility and machine learning models applicable to specific problems. We review the state of the art of five main aspects in human mobility: (1) human mobility data landscape; (2) key measures of individual and collective mobility; (3) generative models at the level of individual, population and mixture of the two; (4) next location prediction algorithms; (5) applications for social good. For each aspect, we show experiments and simulations using the Python library "scikit-mobility" developed by the presenters of the tutorial

    Predicting and Explaining Privacy Risk Exposure in Mobility Data

    Get PDF
    Mobility data is a proxy of different social dynamics and its analysis enables a wide range of user services. Unfortunately, mobility data are very sensitive because the sharing of people’s whereabouts may arise serious privacy concerns. Existing frameworks for privacy risk assessment provide tools to identify and measure privacy risks, but they often (i) have high computational complexity; and (ii) are not able to provide users with a justification of the reported risks. In this paper, we propose expert, a new framework for the prediction and explanation of privacy risk on mobility data. We empirically evaluate privacy risk on real data, simulating a privacy attack with a state-of-the-art privacy risk assessment framework. We then extract individual mobility profiles from the data for predicting their risk. We compare the performance of several machine learning algorithms in order to identify the best approach for our task. Finally, we show how it is possible to explain privacy risk prediction on real data, using two algorithms: Shap, a feature importance-based method and Lore, a rule-based method. Overall, expert is able to provide a user with the privacy risk and an explanation of the risk itself. The experiments show excellent performance for the prediction task

    Assessing privacy risk in retail data

    No full text
    Retail data are one of the most requested commodities by commercial companies. Unfortunately, from this data it is possible to retrieve highly sensitive information about individuals. Thus, there exists the need for accurate individual privacy risk evaluation. In this paper, we propose a methodology for assessing privacy risk in retail data. We define the data formats for representing retail data, the privacy framework for calculating privacy risk and some possible privacy attacks for this kind of data. We perform experiments in a real-world retail dataset, and show the distribution of privacy risk for the various attacks

    Privacy risk for individual basket patterns

    No full text
    Retail data are of fundamental importance for businesses and enterprises that want to understand the purchasing behaviour of their customers. Such data is also useful to develop analytical services and for marketing purposes, often based on individual purchasing patterns. However, retail data and extracted models may also provide very sensitive information to possible malicious third parties. Therefore, in this paper we propose a methodology for empirically assessing privacy risk in the releasing of individual purchasing data. The experiments on real-world retail data show that although individual patterns describe a summary of the customer activity, they may be successful used for the customer re-identifiation

    Predicting and Explaining Privacy Risk Exposure in Mobility Data

    Get PDF
    Mobility data is a proxy of different social dynamics and its analysis enables a wide range of user services. Unfortunately, mobility data are very sensitive because the sharing of people\u2019s whereabouts may arise serious privacy concerns. Existing frameworks for privacy risk assessment provide tools to identify and measure privacy risks, but they often (i) have high computational complexity; and (ii) are not able to provide users with a justification of the reported risks. In this paper, we propose expert, a new framework for the prediction and explanation of privacy risk on mobility data. We empirically evaluate privacy risk on real data, simulating a privacy attack with a state-of-the-art privacy risk assessment framework. We then extract individual mobility profiles from the data for predicting their risk. We compare the performance of several machine learning algorithms in order to identify the best approach for our task. Finally, we show how it is possible to explain privacy risk prediction on real data, using two algorithms: Shap, a feature importance-based method and Lore, a rule-based method. Overall, expert is able to provide a user with the privacy risk and an explanation of the risk itself. The experiments show excellent performance for the prediction task

    Measuring objective and subjective well-being: dimensions and data sources

    No full text
    corecore