13 research outputs found

    Multi-scale Graph Neural Networks for Mammography Classification and Abnormality Detection

    No full text
    International audienceEarly breast cancer diagnosis and lesion detection have been made possible through medical imaging modalities such as mammography. However, the interpretation of mammograms by a radiologist is still challenging. In this paper, we tackle the problems of whole mammogram classification and local abnormality detection, respectively, with supervised and weakly-supervised approaches. To address the multi-scale nature of the problem, we first extract superpixels at different scales. We then introduce graph connexions between superpixels (within and across scales) to better model the lesion’s size and shape variability. On top of the multi-scale graph, we design a Graph Neural Network (GNN) trained in a supervised manner to predict a binary class for each input image. The GNN summarizes the information from different regions, learning features that depend not only on local textures but also on the superpixels’ geometrical distribution and topological relations. Finally, we design the last layer of the GNN to be a global pooling operation to allow for a weakly-supervised training of the abnormality detection task, following the principles of Multiple Instance Learning (MIL). The predictions of the last-but-one GNN layer result in a superpixelized heatmap of the abnormality probabilities, leading to a weakly-supervised abnormality detector with low annotations requirements (i.e., trained with image-wise labels only). Experiments on one private and one publicly available datasets show that our superpixel-based multi-scale GNN improves the classification results over prior weakly supervised approaches. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG
    corecore