5,806 research outputs found

    Resonant modes in strain-induced graphene superlattices

    Full text link
    We study tunneling across a strain-induced superlattice in graphene. In studying the effect of applied strain on the low-lying Dirac-like spectrum, both a shift of the Dirac points in reciprocal space, and a deformation of the Dirac cones is explicitly considered. The latter corresponds to an anisotropic, possibly non-uniform, Fermi velocity. Along with the modes with unit transmission usually found across a single barrier, we analytically find additional resonant modes when considering a periodic structure of several strain-induced barriers. We also study the band-like spectrum of bound states, as a function of conserved energy and transverse momentum. Such a strain-induced superlattice may thus effectively work as a mode filter for transport in graphene

    Cavity QED of Strongly Correlated Electron Systems: A No-go Theorem for Photon Condensation

    Full text link
    In spite of decades of work it has remained unclear whether or not superradiant quantum phases, referred to here as photon condensates, can occur in equilibrium. In this Letter, we first show that when a non-relativistic quantum many-body system is coupled to a cavity field, gauge invariance forbids photon condensation. We then present a microscopic theory of the cavity quantum electrodynamics of an extended Falicov-Kimball model, showing that, in agreement with the general theorem, its insulating ferroelectric and exciton condensate phases are not altered by the cavity and do not support photon condensation.Comment: Reference list updated and minor typos correcte

    Theory of integer quantum Hall polaritons in graphene

    Get PDF
    We present a theory of the cavity quantum electrodynamics of the graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to calculate thermodynamic properties of the quantum Hall polariton system. Finally, we demonstrate that the generalized Dicke description fails when the graphene sheet is heavily doped, i.e. when the Landau level spectrum of 2D massless Dirac fermions is approximately harmonic. In this case we `integrate out' the Landau levels in valence band and obtain an effective Hamiltonian for the entire stack of Landau levels in conduction band, as dressed by strong light-matter interactions.Comment: 20 pages, 7 figure

    Dynamical polarization of graphene under strain

    Full text link
    We study the dependence of the plasmon dispersion relation of graphene on applied uniaxial strain. Besides electron correlation at the RPA level, we also include local field effects specific for the honeycomb lattice. As a consequence of the two-band character of the electronic band structure, we find two distinct plasmon branches. We recover the square-root behavior of the low-energy branch, and find a nonmonotonic dependence of the strain-induced modification of its stiffness, as a function of the wavevector orientation with respect to applied strain.Comment: Phys. Rev. B, accepte

    Statistical correlations of an anyon liquid at low temperatures

    Full text link
    Using a proposed generalization of the pair distribution function for a gas of non-interacting particles obeying fractional exclusion statistics in arbitrary dimensionality, we derive the statistical correlations in the asymptotic limit of vanishing or low temperature. While Friedel-like oscillations are present in nearly all non-bosonic cases at T=0, they are characterized by exponential damping at low temperature. We discuss the dependence of these features on dimensionality and on the value of the statistical parameter alpha.Comment: to appear in Phys. Chem. Liquid

    Effect of uniaxial strain on plasmon excitations in graphene

    Full text link
    Uniaxial strain is known to modify significantly the electronic properties of graphene, a carbon single layer of atomic width. Here, we study the effect of applied strain on the composite excitations arising from the coupling of charge carriers and plasmons in graphene, i.e. the plasmarons. Specifically, we predict that the plasmaron energy dispersion, which has been recently observed experimentally in unstrained graphene, is shifted and broadened by applied uniaxial strain. Thus, strain constitutes an additional parameter which may be useful to tune graphene properties in plasmaronic devices.Comment: Invited oral lecture at the 23rd AIRAPT International Conference on "High Pressure Science and Technology", Mumbai (India), September 25-30, 2011. To be published in J. Phys.: Conf. Series (2012
    • …
    corecore