122 research outputs found

    The glucocorticoid receptor in brown adipocytes is dispensable for control of energy homeostasis

    Get PDF
    Aberrant activity of the glucocorticoid (GC)/glucocorticoid receptor (GR) endocrine system has been linked to obesity-related metabolic dysfunction. Traditionally, the GC/GR axis has been believed to play a crucial role in adipose tissue formation and function in both, white (WAT) and brown adipose tissue (BAT). While recent studies have challenged this notion for WAT, the contribution of GC/GR signaling to BAT-dependent energy homeostasis remained unknown. Here, we have generated and characterized a BAT-specific GR-knockout mouse (GRBATKO), for the first time allowing to genetically interrogate the metabolic impact of BAT-GR. The HPA axis in GRBATKO mice was intact, as was the ability of mice to adapt to cold. BAT-GR was dispensable for the adaptation to fasting–feeding cycles and the development of diet-induced obesity. In obesity, glucose and lipid metabolism, insulin sensitivity, and food intake remained unchanged, aligning with the absence of changes in thermogenic gene expression. Together, we demonstrate that the GR in UCP1-positive BAT adipocytes plays a negligible role in systemic metabolism and BAT function, thereby opposing a long-standing paradigm in the field

    Nonlinear partial differential equations and applications: Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53

    Get PDF
    TP53 does not fully comply with the Knudson model [Knudson, A. G., Jr. (1971) Proc. Natl. Acad. Sci. USA 68, 820–823] in that a reduction of constitutional expression of p53 may be sufficient for tumor predisposition . This finding suggests a gene-dosage effect for p53 function. To determine whether TP53 gene dosage affects the transcriptional regulation of target genes, we performed oligonucleotide-array gene expression analysis by using human cells with wild-type p53 (p53 +/+), or with one (p53 +/−), or both (p53 −/−) TP53 alleles disrupted by homologous recombination. We identified 35 genes whose expression is significantly correlated to the dosage of TP53. These genes are involved in a variety of cellular processes including signal transduction, cell adhesion, and transcription regulation. Several of them are involved in neurogenesis and neural crest migration, developmental processes in which p53 is known to play a role. Motif search analysis revealed that of the genes highly expressed in p53 +/+ and +/− cells, several contain a putative p53 consensus binding site (bs), suggesting that they could be directly regulated by p53. Among those genes, we chose CSPG2 (which encodes versican) for further study because it contains a bona fide p53 bs in its first intron and its expression highly correlates with TP53 dosage. By using in vitro and in vivo assays, we showed CSPG2 to be directly transactivated by p53. In conclusion, we developed a strategy to demonstrate that many genes are affected by TP53 gene dosage for their expression. We report several candidate genes as potential downstream targets of p53 in nonstressed cells. Among them, CSPG2 is validated as being directly transactivated by p53. Our method provides a useful tool to elucidate additional mechanisms by which p53 exerts its functions

    SARS-CoV-2 infection and replication in human gastric organoids

    Get PDF
    COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission

    Murine Models and Cell Lines for the Investigation of Pheochromocytoma: Applications for Future Therapies?

    Get PDF
    Pheochromocytomas (PCCs) are slow-growing neuroendocrine tumors arising from adrenal chromaffin cells. Tumors arising from extra-adrenal chromaffin cells are called paragangliomas. Metastases can occur up to approximately 60% or even more in specific subgroups of patients. There are still no well-established and clinically accepted “metastatic” markers available to determine whether a primary tumor is or will become malignant. Surgical resection is the most common treatment for non-metastatic PCCs, but no standard treatment/regimen is available for metastatic PCC. To investigate what kind of therapies are suitable for the treatment of metastatic PCC, animal models or cell lines are very useful. Over the last two decades, various mouse and rat models have been created presenting with PCC, which include models presenting tumors that are to a certain degree biochemically and/or molecularly similar to human PCC, and develop metastases. To be able to investigate which chemotherapeutic options could be useful for the treatment of metastatic PCC, cell lines such as mouse pheochromocytoma (MPC) and mouse tumor tissue (MTT) cells have been recently introduced and they both showed metastatic behavior. It appears these MPC and MTT cells are biochemically and molecularly similar to some human PCCs, are easily visualized by different imaging techniques, and respond to different therapies. These studies also indicate that some mouse models and both mouse PCC cell lines are suitable for testing new therapies for metastatic PCC

    Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.</p> <p>Methods</p> <p>The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-<it>ras</it>, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice. Sensitivity towards chemotherapy was analysed by MTT assay.</p> <p>Results</p> <p>PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice resulted in formation of primary tumors and spontaneous lung metastasis.</p> <p>Conclusion</p> <p>The established PaCa 5061 cell line and its injection into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.</p

    Nat Genet

    Get PDF
    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.Comment in : Genetic differential calculus. [Nat Genet. 2015] Comment in : Scaling up phenotyping studies. [Nat Biotechnol. 2015
    corecore