98 research outputs found

    A hidden side of the COVID-19 pandemic in children: the double burden of undernutrition and overnutrition.

    Get PDF
    The COVID-19 pandemic has deteriorated key determinants of health and caused major upheavals around the world. Children, although less directly affected by the virus, are paying a heavy price through the indirect effects of the crisis, including poor diet, mental health impact, social isolation, addiction to screens and lack of schooling and health care, particularly among vulnerable groups. This paper is aimed at discussing the potential impact of this pandemic on children's nutrition and lifestyle. Preliminary data from the literature and from our survey show significant disruptions in nutrition and lifestyle habits of children. While undernutrition is expected to worsen in poor countries, obesity rates could increase in middle- and high-income countries especially among precarious groups widening the gap in health and social inequalities.The real impact of the COVID-19 pandemic on children extends well beyond that of a viral infection. This crisis has public health implications that could have life-long consequences on children. It requires effective and targeted measures mainly for vulnerable children and households to guarantee children's basic rights for optimal nutrition, health and development

    Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study.

    Get PDF
    Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D <sub>3</sub> (25(OH)D <sub>3</sub> ) with LC-MS/MS and explored associations using multiple logistic regression. The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m <sup>2</sup> with median C-Reactive Protein 1 mg/l. In logistic regressions, log <sub>2</sub> (Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D <sub>3</sub> with anti-SARS-CoV-2 IgG or IgA seropositivity. Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. CORONA IMMUNITAS:: ISRCTN18181860

    SARS-CoV-2 neutralizing antibody response in vaccinated and non-vaccinated hospital healthcare workers with or without history of infection.

    Get PDF
    Between March 2021 and February 2022, SARS-CoV-2 neutralizing antibodies dynamics was investigated in a prospective observational study in 903 healthcare workers of a hospital in Switzerland. A surrogate neutralization assay measuring the competitive inhibition of the angiotensin converting enzyme 2 (ACE2) binding to the spike protein (S) of the SARS-CoV-2 wild type virus and to five variants of concern (Alpha, Beta, Gamma, Delta, Omicron) was used. We observed a broad distribution of neutralization activity among participants and substantial differences in neutralizing titers against variants. Participants were grouped based on combinations of vaccination status (1, 2 or 3 doses) and/or prior or subsequent SARS-CoV-2 infection/reinfection. Triple vaccination resulted in the highest neutralization response, as did double vaccination with prior or subsequent infection. Double vaccination without infection showed an intermediate neutralization response while SARS-CoV-2 infection in non-vaccinated participants resulted in poor neutralization response. After triple vaccination or double vaccination plus infection, additional vaccination and/or reinfection had no impact on neutralizing antibody titers over the observed period. These results strongly support the booster dose strategy, while additional booster doses within short time intervals might not improve immunization. However, dynamics of neutralizing antibodies titers needs to be monitored individually, over time and include newly emerging variants

    New miniaturized microwave cavity for Rubidium atomic clocks

    Get PDF
    Nowadays there is an increasing need for radically miniaturized and low-power atomic frequency standards, for use in mobile and battery-powered applications. For the miniaturization of double-resonance (DR) Rubidium (Rb-87) atomic clocks, the size reduction of the microwave cavity or resonator (MWR) to well below the wavelength of the atomic transition (6.835 GHz for Rb-87) has been a long-standing issue. Here we present a newly developed miniaturized MWR, the mu-LGR, consisting of a loop-gap resonator based cavity with very compact dimensions (volume < 0.9 cm(3)). The mu-LGR meets the requirements of the atomic clock application and its assembly can be performed using repeatable and low-cost techniques. The concept of the proposed device was validated through simulations and prototypes were successfully manufactured and tested. High-quality DR spectra and first clock stabilities were demonstrated experimentally, proving that the mu-LGR is suitable for integration in a miniaturized atomic clock

    Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses to the spike (S) protein monomer, S protein native trimeric form, or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n = 93) and in individuals enrolled in a postinfection seroprevalence population study (n = 578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein, or within a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute-infection-phase samples. Interestingly, compared to anti-S antibody responses, those against the N protein appear to wane in the postinfection cohort. Seroprevalence in a "positive patient contacts" group (n = 177) was underestimated by N protein assays by 10.9 to 32.2%, while the "randomly selected" general population group (n = 311) was reduced by up to 45% relative to the S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and postinfection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection, but that responses against N appear to wane in the postinfection phase where those against the S protein persist over time. The most sensitive serological assay in both acute and postinfection phases used the native S protein trimer as the binding antigen, which has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response

    Development of hybrid immunity during a period of high incidence of Omicron infections.

    Get PDF
    Seroprevalence and the proportion of people with neutralizing activity (functional immunity) against SARS-CoV-2 variants were high in early 2022. In this prospective, population- based, multi-region cohort study, we assessed the development of functional and hybrid immunity (induced by vaccination and infection) in the general population during this period of high incidence of infections with Omicron variants. We randomly selected and assessed individuals aged ≥16 years from the general population in southern (n = 739) and north-eastern (n = 964) Switzerland in March 2022. We assessed them again in June/July 2022, supplemented with a random sample from western (n = 850) Switzerland. We measured SARS-CoV-2 specific IgG antibodies and SARS-CoV-2 neutralizing antibodies against three variants (ancestral strain, Delta, Omicron). Seroprevalence remained stable from March 2022 (97.6%, n = 1894) to June/July 2022 (98.4%, n = 2553). In June/July, the percentage of individuals with neutralizing capacity against ancestral strain was 94.2%, against Delta 90.8% and against Omicron 84.9%, and 50.6% developed hybrid immunity. Individuals with hybrid immunity had highest median levels of anti-spike IgG antibodies titres [4518 World Health Organization units per millilitre (WHO U/mL)] compared with those with only vaccine- (4304 WHO U/mL) or infection- (269 WHO U/mL) induced immunity, and highest neutralization capacity against ancestral strain (hybrid: 99.8%, vaccinated: 98%, infected: 47.5%), Delta (hybrid: 99%, vaccinated: 92.2%, infected: 38.7%) and Omicron (hybrid: 96.4%, vaccinated: 79.5%, infected: 47.5%). This first study on functional and hybrid immunity in the Swiss general population after Omicron waves showed that SARS-CoV-2 has become endemic. The high levels of antibodies and neutralization support the emerging recommendations of some countries where booster vaccinations are still strongly recommended for vulnerable persons but less so for the general population

    Heterogenous humoral and cellular immune responses with distinct trajectories post-SARS-CoV-2 infection in a population-based cohort.

    Get PDF
    To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection

    Case Report: Stepwise Anti-Inflammatory and Anti-SARS-CoV-2 Effects Following Convalescent Plasma Therapy With Full Clinical Recovery.

    Get PDF
    In these times of COVID-19 pandemic, concern has been raised about the potential effects of SARS-CoV-2 infection on immunocompromised patients, particularly on those receiving B-cell depleting agents and having therefore a severely depressed humoral response. Convalescent plasma can be a therapeutic option for these patients. Understanding the underlying mechanisms of convalescent plasma is crucial to optimize such therapeutic approach. Here, we describe a COVID-19 patient who was deeply immunosuppressed following rituximab (anti-CD20 monoclonal antibody) and concomitant chemotherapy for chronic lymphoid leukemia. His long-term severe T and B cell lymphopenia allowed to evaluate the treatment effects of convalescent plasma. Therapeutic outcome was monitored at the clinical, biological and radiological level. Moreover, anti-SARS-CoV-2 antibody titers (IgM, IgG and IgA) and neutralizing activity were assessed over time before and after plasma transfusions, alongside to SARS-CoV-2 RNA quantification and virus isolation from the upper respiratory tract. Already after the first cycle of plasma transfusion, the patient experienced rapid improvement of pneumonia, inflammation and blood cell counts, which may be related to the immunomodulatory properties of plasma. Subsequently, the cumulative increase in anti-SARS-CoV-2 neutralizing antibodies due to the three additional plasma transfusions was associated with progressive and finally complete viral clearance, resulting in full clinical recovery. In this case-report, administration of convalescent plasma revealed a stepwise effect with an initial and rapid anti-inflammatory activity followed by the progressive SARS-CoV-2 clearance. These data have potential implications for a more extended use of convalescent plasma and future monoclonal antibodies in the treatment of immunosuppressed COVID-19 patients

    Controlled nucleation of thin microcrystalline layers for the recombination junction in a-Si stacked cells

    Get PDF
    In high-efficiency a-Si : H based stacked cells, at least one of the two layers that form the internal n/p junction has preferentially to be microcrystalline so as to obtain sufficient recombination at the junction [1–6]. The crucial point is the nucleation of a very thin μc-Si : H layer on an amorphous (i-layer) substrate [2, 4]. In this study, fast nucleation is induced through the treatment of the amorphous substrate by a CO2 plasma. The resulting n-layers with a high crystalline fraction were, however, found to reduce the Voc when incorporated in tandem cells. The reduction of the Voc could be restored only by a precise control of the crystalline fraction of the n-layer. As a technologically more feasible alternative, we propose a new, combined n-layer, consisting of a first amorphous layer for a high Voc, and a second microcrystalline layer, induced by CO2 treatment, for a sufficient recombination at the n/p junction. Resulting tandem cells show no Voc losses compared to two standard single cells, and an efficient recombination of the carriers at the internal junction as proved by the low series resistance (15 Ωcm2) and the high FF ( 75%) of the stacked cells
    corecore