34 research outputs found

    Vacuum effective action and inflation

    Get PDF
    We consider vacuum quantum effects in the Early Universe, which may lead to inflation. The inflation is a direct consequence of the supposition that, at high energies, all the particles can be described by the weakly interacting, massless, conformally invariant fields. We discuss, from the effective field theory point of view, the stability of inflation, transition to the FRW solution, and also possibility to study metric and density perturbations.Comment: 6 pages, LaTeX, no figures. Contribution to the Proceedings of the X Jorge Andre Swieca school in Particles and Fields. To be published in World Scientifi

    The anomaly-induced effective action and natural inflation

    Full text link
    The anomaly-induced inflation (modified Starobinsky model) is based on the application of the effective quantum field theory approach to the Early Universe. We present a brief general review of the model and show that it does not require a fine-tuning for the parameters of the theory or initial data, gives a real chance to meet a graceful exit to the FRW phase and also has positive features with respect to the metric perturbations.Comment: Invited talk at the International Workshop on Astroparticle and High Energy Physics, October 14 - 18, 2003, Valencia, Spai

    Effective growth of matter density fluctuations in the running LCDM and LXCDM models

    Full text link
    We investigate the matter density fluctuations \delta\rho/\rho for two dark energy (DE) models in the literature in which the cosmological term \Lambda is a running parameter. In the first model, the running LCDM model, matter and DE exchange energy, whereas in the second model, the LXCDM model, the total DE and matter components are conserved separately. The LXCDM model was proposed as an interesting solution to the cosmic coincidence problem. It includes an extra dynamical component, the "cosmon" X, which interacts with the running \Lambda, but not with matter. In our analysis we make use of the current value of the linear bias parameter, b^2(0)= P_{GG}/P_{MM}, where P_{MM} ~ (\delta\rho/\rho)^2 is the present matter power spectrum and P_{GG} is the galaxy fluctuation power spectrum. The former can be computed within a given model, and the latter is found from the observed LSS data (at small z) obtained by the 2dF galaxy redshift survey. It is found that b^2(0)=1 within a 10% accuracy for the standard LCDM model. Adopting this limit for any DE model and using a method based on the effective equation of state for the DE, we can set a limit on the growth of matter density perturbations for the running LCDM model, the solution of which is known. This provides a good test of the procedure, which we then apply to the LXCDM model in order to determine the physical region of parameter space, compatible with the LSS data. In this region, the LXCDM model is consistent with known observations and provides at the same time a viable solution to the cosmic coincidence problem.Comment: LaTeX, 38 pages, 8 figures. Version accepted in JCA

    Dark energy perturbations and cosmic coincidence

    Get PDF
    While there is plentiful evidence in all fronts of experimental cosmology for the existence of a non-vanishing dark energy (DE) density \rho_D in the Universe, we are still far away from having a fundamental understanding of its ultimate nature and of its current value, not even of the puzzling fact that \rho_D is so close to the matter energy density \rho_M at the present time (i.e. the so-called "cosmic coincidence" problem). The resolution of some of these cosmic conundrums suggests that the DE must have some (mild) dynamical behavior at the present time. In this paper, we examine some general properties of the simultaneous set of matter and DE perturbations (\delta\rho_M, \delta\rho_D) for a multicomponent DE fluid. Next we put these properties to the test within the context of a non-trivial model of dynamical DE (the LXCDM model) which has been previously studied in the literature. By requiring that the coupled system of perturbation equations for \delta\rho_M and \delta\rho_D has a smooth solution throughout the entire cosmological evolution, that the matter power spectrum is consistent with the data on structure formation and that the "coincidence ratio" r=\rho_D/\rho_M stays bounded and not unnaturally high, we are able to determine a well-defined region of the parameter space where the model can solve the cosmic coincidence problem in full compatibility with all known cosmological data.Comment: Typos correcte

    Evolução da maturação e características físicoquímicas da videira "BRS Vitória" em diferentes épocas de poda.

    Get PDF
    Na região noroeste paulista são realizadas duas podas no mesmo ano, a primeira de produção, realizada de fevereiro a junho, e a segunda para formação, realizada entre junho a novembro. O período de colheita se estende de julho a novembro, diferentemente de outras regiões produtoras, o que beneficia os produtores na comercialização da uva

    The scaling evolution of cosmological constant

    Full text link
    In quantum field theory the parameters of the vacuum action are subject to renormalization group running. In particular, the ``cosmological constant'' is not a constant in a quantum field theory context, still less should be zero. In this paper we continue with previous work, and derive the particle contributions to the running of the cosmological and gravitational constants in the framework of the Standard Model in curved space-time. At higher energies the calculation is performed in a sharp cut off approximation. We assess, in two different frameworks, whether the scaling dependences of the cosmological and gravitational constants spoil primordial nucleosynthesis. Finally, the cosmological implications of the running of the cosmological constant are discussed.Comment: 25 pages, 1 figure using axodraw. Extended version. The title and the part of the discussion concerning a gravitational energy scale modified. The new section about the role of the cosmological constant in the anomaly-induced inflation added. Misprint in one reference correcte

    Cosmic perturbations with running G and Lambda

    Full text link
    Cosmologies with running cosmological term (Lambda) and gravitational Newton's coupling (G) may naturally be expected if the evolution of the universe can ultimately be derived from the first principles of Quantum Field Theory or String Theory. In this paper, we derive the general cosmological perturbation equations for models with variable G and Lambda in which the fluctuations in both variables are explicitly included. We demonstrate that, if matter is covariantly conserved, the late growth of matter density perturbations is independent of the wavenumber. Furthermore, if Lambda is negligible at high redshifts and G varies slowly, we find that these cosmologies produce a matter power spectrum with the same shape as that of the concordance LCDM model, thus predicting the same basic features on structure formation. Despite this shape indistinguishability, the free parameters of the variable G and Lambda models can still be effectively constrained from the observational bounds on the spectrum amplitude.Comment: Accepted in Classical and Quantum Gravity. One appendix on perturbations in the Newtonian gauge added. Extended discussion and new references
    corecore