92 research outputs found

    A 1H NMR comparative study of human adult and fetal hemoglobins

    Get PDF
    AbstractThe affinities of the individual subunits in human adult and fetal hemoglobins to azide ion have been determined from the combined analysis of NMR and optical titration data. Structural and functional non-equivalence of the constituent subunits, i.e. α and β subunits in human adult hemoglobin and α and γ subunits in human fetal hemoglobin, has been confirmed. The function of the α subunits, which are common to both hemoglobins, is essentially identical in these hemoglobins and, in spite of the substitutions of 39 amino acid residues between β and γ subunits, they exhibit similar azide ion affinities. The present study also demonstrates that the NMR spectral comparison between the two proteins provides signal assignments to the individual subunits in intact tetramer

    Конференции

    Get PDF
    STUDY QUESTION: What is the cost-effectiveness of in vitro fertilization(IVF) with conventional ovarian stimulation, single embryotransfer (SET) and subsequent cryocycles or IVF in a modified natural cycle (MNC) compared with intrauterine insemination with controlled ovarian hyperstimulation (IUI-COH) as a first-line treatment in couples with unexplained subfertility and an unfavourable prognosis on natural conception?. SUMMARY ANSWER: Both IVF strategies are significantly more expensive when compared with IUI-COH, without being significantly more effective. In the comparison between IVF-MNC and IUI-COH, the latter is the dominant strategy. Whether IVF-SET is cost-effective depends on society's willingness to pay for an additional healthy child. WHAT IS KNOWN ALREADY: IUI-COH and IVF, either after conventional ovarian stimulation or in a MNC, are used as first-line treatments for couples with unexplained or mild male subfertility. As IUI-COH is less invasive, this treatment is usually offered before proceeding to IVF. Yet, as conventional IVF with SET may lead to higher pregnancy rates in fewer cycles for a lower multiple pregnancy rate, some have argued to start with IVF instead of IUI-COH. In addition, IVF in the MNC is considered to be a more patient friendly and less costly form of IVF. STUDY DESIGN, SIZE, DURATION: We performed a cost-effectiveness analysis alongside a randomized noninferiority trial. Between January 2009 and February 2012, 602 couples with unexplained infertility and a poor prognosis on natural conception were allocated to three cycles of IVF-SET including frozen embryo transfers, six cycles of IVF-MNC or six cycles of IUI-COH. These couples were followed until 12 months after randomization. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected data on resource use related to treatment, medication and pregnancy from the case report forms. We calculated unit costs from various sources. For each of the three strategies, we calculated the mean costs and effectiveness. Incremental cost-effectiveness ratios (ICER) were calculated for IVF-SET compared with IUI-COH and for IVF-MNC compared with IUI-COH. Nonparametric bootstrap resampling was used to investigate the effect of uncertainty in our estimates. MAIN RESULTS AND THE ROLE OF CHANCE: There were 104 healthy children (52%) born in the IVF-SET group, 83 (43%) the IVF-MNC group and 97 (47%) in the IUI-COH group. The mean costs per couple were (sic)7187 for IVF-SET, (sic)8206 for IVF-MNC and (sic)5070 for IUI-COH. Compared with IUI-COH, the costs for IVF-SET and IVF-MNC were significantly higher (mean differences (sic)2117; 95% CI: (sic)1544-(sic)2657 and (sic)3136, 95% CI: (sic)2519-(sic)3754, respectively). The ICER for IVF-SET compared with IUI-COH was (sic)43 375 for the birth of an additional healthy child. In the comparison of IVF-MNC to IUI-COH, the latter was the dominant strategy, i.e. more effective at lower costs. LIMITATIONS, REASONS FOR CAUTION: We only report on direct health care costs. The present analysis is limited to 12 months. WIDER IMPLICATIONS OF THE FINDINGS: Since we found no evidence in support of offering IVF as a first-line strategy in couples with unexplained and mild subfertility, IUI-COH should remain the treatment of first choice

    Lifestyle intervention prior to IVF does not improve embryo utilization rate and cumulative live birth rate in women with obesity:a nested cohort study

    Get PDF
    STUDY QUESTION: Does lifestyle intervention consisting of an energy-restricted diet, enhancement of physical activity and motivational counseling prior to IVF improve embryo utilization rate (EUR) and cumulative live birth rate (CLBR) in women with obesity? SUMMARY ANSWER: A 6-month lifestyle intervention preceding IVF improved neither EUR nor CLBR in women with obesity in the first IVF treatment cycle where at least one oocyte was retrieved. WHAT IS KNOWN ALREADY: A randomized controlled trial (RCT) evaluating the efficacy of a low caloric liquid formula diet (LCD) preceding IVF in women with obesity was unable to demonstrate an effect of LCD on embryo quality and live birth rate: in this study, only one fresh embryo transfer (ET) or, in case of freeze-all strategy, the first transfer with frozen-thawed embryos was reported. We hypothesized that any effect on embryo quality of a lifestyle intervention in women with obesity undergoing IVF treatment is better revealed by EUR and CLBR after transfer of all fresh and frozen-thawed embryos. STUDY DESIGN, SIZE, DURATION: This is a nested cohort study within an RCT, the LIFEstyle study. The original study examined whether a 6-month lifestyle intervention prior to infertility treatment in women with obesity improved live birth rate, compared to prompt infertility treatment within 24 months after randomization. In the original study between 2009 and 2012, 577 (three women withdrew informed consent) women with obesity and infertility were assigned to a lifestyle intervention followed by infertility treatment (n = 289) or to prompt infertility treatment (n = 285). PARTICIPANTS/MATERIALS, SETTING, METHODS: Only participants from the LIFEstyle study who received IVF treatment were eligible for the current analysis. In total, 137 participants (n = 58 in the intervention group and n = 79 in the control group) started the first cycle. In 25 participants, the first cycle was cancelled prior to oocyte retrieval mostly due to poor response. Sixteen participants started a second or third consecutive cycle. The first cycle with successful oocyte retrieval was used for this analysis, resulting in analysis of 51 participants in the intervention group and 72 participants in the control group. Considering differences in embryo scoring methods and ET day strategy between IVF centers, we used EUR as a proxy for embryo quality. EUR was defined as the proportion of inseminated/injected oocytes per cycle that was transferred or cryopreserved as an embryo. Analysis was performed per cycle and per oocyte/embryo. CLBR was defined as the percentage of participants with at least one live birth from the first fresh and subsequent frozen-thawed ET(s). In addition, we calculated the Z-score for singleton neonatal birthweight and compared these outcomes between the two groups. MAIN RESULTS AND THE ROLE OF CHANCE: The overall mean age was 31.6 years and the mean BMI was 35.4 ± 3.2 kg/m(2) in the intervention group, and 34.9 ± 2.9 kg/m(2) in the control group. The weight change at 6 months was in favor of the intervention group (mean difference in kg vs the control group: −3.14, 95% CI: −5.73 to −0.56). The median (Q25; Q75) number of oocytes retrieved was 4.00 (2.00; 8.00) in the intervention group versus 6.00 (4.00; 9.75) in the control group, and was not significantly different, as was the number of oocytes inseminated/injected (4.00 [2.00; 8.00] vs 6.00 [3.00; 8.75]), normal fertilized embryos (2.00 [0.50; 5.00] vs 3.00 [1.00; 5.00]) and the number of cryopreserved embryos (2.00 [1.25; 4.75] vs 2.00 [1.00; 4.00]). The median (Q25; Q75) EUR was 33.3% (12.5%; 60.0%) in the intervention group and 33.3% (16.7%; 50.0%) in the control group in the per cycle analysis (adjusted B: 2.7%, 95% CI: −8.6% to 14.0%). In the per oocyte/embryo analysis, in total, 280 oocytes were injected or inseminated in the intervention group, 113 were utilized (transferred or cryopreserved, EUR = 40.4%); in the control group, EUR was 30.8% (142/461). The lifestyle intervention did not significantly improve EUR (adjusted odds ratio [OR]: 1.36, 95% CI: 0.94–1.98) in the per oocyte/embryo analysis, taking into account the interdependency of the oocytes per participant. CLBR was not significantly different between the intervention group and the control group after adjusting for type of infertility (male factor and unexplained) and smoking (27.5% vs 22.2%, adjusted OR: 1.03, 95% CI: 0.43–2.47). Singleton neonatal birthweight and Z-score were not significantly different between the two groups. LIMITATIONS, REASONS FOR CAUTION: This study is a nested cohort study within an RCT, and no power calculation was performed. The randomization was not stratified for indicated treatment, and although we corrected our analyses for baseline differences, there may be residual confounding. The limited absolute weight loss and the short duration of the lifestyle intervention might be insufficient to affect EUR and CLBR. WIDER IMPLICATIONS OF THE FINDINGS: Our data do not support the hypothesis of a beneficial short-term effect of lifestyle intervention on EUR and CLBR after IVF in women with obesity, although more studies are needed as there may be a potential clinically relevant effect on EUR. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by a grant from ZonMw, the Dutch Organization for Health Research and Development (50-50110-96-518). A.H. has received an unrestricted educational grant from Ferring pharmaceuticals BV, The Netherlands. B.W.J.M. is supported by an NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds Stock options for ObsEva. B.W.J.M. has received research funding from Guerbet, Ferring and Merck. F.J.M.B. reports personal fees from membership of the external advisory board for Merck Serono and a research support grant from Merck Serono, outside the submitted work. TRIAL REGISTRATION NUMBER: The LIFEstyle RCT was registered at the Dutch trial registry (NTR 1530). https://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1530

    Thyroid-stimulating hormone and free thyroxine fail to predict the severity and clinical course of hyperemesis gravidarum : A prospective cohort study

    Get PDF
    Funding information: This prospective cohort study was supported by a research grant from North West Hospital Group, Alkmaar, the Netherlands (Grant number: 2013T085) and by a research grant from the Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam UMC, the Netherlands (Project number: 23346). ACKNOWLEDGMENTS We thank Dr. J.P. Bestwick (employed at Queen Mary University of London, London, UK) and Professor Dr. J.H. Lazarus (employed at Cardiff School of Medicine, Cardiff, UK) for providing TSH medians from their study in the UK. Dr. J.P. Bestwick and Professor Dr. Lazarus have nothing to disclose.Peer reviewedPublisher PD

    Tubal flushing with oil-based or water-based contrast at hysterosalpingography for infertility:long-term reproductive outcomes of a randomized trial

    Get PDF
    Objective: To determine the impact of oil -based versus water -based contrast on pregnancy and live birth rates <5 years after hysterosalpingography (HSG) in infertile women. Design: A 5 -year follow-up study of a multicenter randomized trial. Setting: Hospitals. Patient(s): Infertile women with an ovulatory cycle, 18 - 39 years of age, and having a low risk of tubal pathology. Intervention(s): Use of oil -based versus water -based contrast during HSG. Main Outcome Measure(s): Ongoing pregnancy, live births, time to ongoing pregnancy, second ongoing pregnancy. Result(s): A total of 1,119 women were randomly assigned to HSG with oil -based contrast (n = 557) or water -based contrast (n = 562). After 5 years, 444 of 555 women in the oil group (80.0%) and 419 of 559 women in the water group (75.0%) had an ongoing pregnancy (relative risk [RR] 1.07; 95% con fi dence interval [CI] 1.00 - 1.14), and 415 of 555 women in the oil group (74.8%) and 376 of 559 women in the water group (67.3%) had live births (RR 1.11; 95% CI 1.03 - 1.20). In the oil group, 228 pregnancies (41.1%) were conceived naturally versus 194 (34.7%) pregnancies in the water group (RR 1.18; 95% CI 1.02 - 1.38). The time to ongoing pregnancy was signi fi cantly shorter in the oil group versus the water group (10.0 vs. 13.7 months; hazard ratio, 1.25; 95% CI 1.09 - 1.43). No difference was found in the occurrence of a second ongoing pregnancy. Conclusion(s): During a 5 -year time frame, ongoing pregnancy and live birth rates are higher after tubal fl ushing with oil -based contrast during HSG compared with water -based contrast. More pregnancies are naturally conceived and time to ongoing pregnancy is shorter after HSG with oil -based contrast. Clinical Trial Registration Number: Netherlands Trial Register (NTR) 3270 and NTR6577(www.trialregister.nl). (Fertil Steril (R) 2020;114:155-62. (C) 2020 by American Society for Reproductive Medicine.

    Impact of GnRH analogues on oocyte/embryo quality and embryo development in in vitro fertilization/intracytoplasmic sperm injection cycles: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the clinical outcomes of ovarian stimulation with either GnRH-agonist or GnRH-antagonist analogues for in vitro fertilization (IVF) being well analysed, the effect of analogues on oocyte/embryo quality and embryo development is still not known in detail. The aim of this case-control study was to compare the efficacy of a multiple-dose GnRH antagonist protocol with that of the GnRH agonist long protocol with a view to oocyte and embryo quality, embryo development and IVF treatment outcome.</p> <p>Methods</p> <p>Between October 2001 and December 2008, 100 patients were stimulated with human menopausal gonadotrophin (HMG) and GnRH antagonist in their first treatment cycle for IVF or intracytoplasmic sperm injection (ICSI). One hundred combined GnRH agonist + HMG (long protocol) cycles were matched to the GnRH antagonist + HMG cycles by age, BMI, baseline FSH levels and by cause of infertility. We determined the number and quality of retrieved oocytes, the rate of early-cleavage embryos, the morphology and development of embryos, as well as clinical pregnancy rates. Statistical analysis was performed using Wilcoxon's matched pairs rank sum test and McNemar's chi-square test. P < 0.05 was considered statistically significant.</p> <p>Results</p> <p>The rate of cytoplasmic abnormalities in retrieved oocytes was significantly higher with the use of GnRH antagonist than in GnRH agonist cycles (62.1% vs. 49.9%; P < 0.01). We observed lower rate of zygotes showing normal pronuclear morphology (49.3% vs. 58.0%; P < 0.01), and higher cell-number of preembryos on day 2 after fertilization (4.28 vs. 4.03; P < 0.01) with the use of GnRH antagonist analogues. The rate of mature oocytes, rate of presence of multinucleated blastomers, amount of fragmentation in embryos and rate of early-cleaved embryos was similar in the two groups. Clinical pregnancy rate per embryo transfer was lower in the antagonist group than in the agonist group (30.8% vs. 40.4%) although this difference did not reach statistical significance (P = 0.17).</p> <p>Conclusion</p> <p>Antagonist seemed to influence favourably some parameters of early embryo development dynamics, while other morphological parameters seemed not to be altered according to GnRH analogue used for ovarian stimulation in IVF cycles.</p

    Prevention of multiple pregnancies in couples with unexplained or mild male subfertility: randomised controlled trial of in vitro fertilisation with single embryo transfer or in vitro fertilisation in modified natural cycle compared with intrauterine insemination with controlled ovarian hyperstimulation

    Get PDF
    OBJECTIVES: To compare the effectiveness of in vitro fertilisation with single embryo transfer or in vitro fertilisation in a modified natural cycle with that of intrauterine insemination with controlled ovarian hyperstimulation in terms of a healthy child. DESIGN: Multicentre, open label, three arm, parallel group, randomised controlled non-inferiority trial. SETTING: 17 centres in the Netherlands. PARTICIPANTS: Couples seeking fertility treatment after at least 12 months of unprotected intercourse, with the female partner aged between 18 and 38 years, an unfavourable prognosis for natural conception, and a diagnosis of unexplained or mild male subfertility. INTERVENTIONS: Three cycles of in vitro fertilisation with single embryo transfer (plus subsequent cryocycles), six cycles of in vitro fertilisation in a modified natural cycle, or six cycles of intrauterine insemination with ovarian hyperstimulation within 12 months after randomisation. MAIN OUTCOME MEASURES: The primary outcome was birth of a healthy child resulting from a singleton pregnancy conceived within 12 months after randomisation. Secondary outcomes were live birth, clinical pregnancy, ongoing pregnancy, multiple pregnancy, time to pregnancy, complications of pregnancy, and neonatal morbidity and mortality RESULTS: 602 couples were randomly assigned between January 2009 and February 2012; 201 were allocated to in vitro fertilisation with single embryo transfer, 194 to in vitro fertilisation in a modified natural cycle, and 207 to intrauterine insemination with controlled ovarian hyperstimulation. Birth of a healthy child occurred in 104 (52%) couples in the in vitro fertilisation with single embryo transfer group, 83 (43%) in the in vitro fertilisation in a modified natural cycle group, and 97 (47%) in the intrauterine insemination with controlled ovarian hyperstimulation group. This corresponds to a risk, relative to intrauterine insemination with ovarian hyperstimulation, of 1.10 (95% confidence interval 0.91 to 1.34) for in vitro fertilisation with single embryo transfer and 0.91 (0.73 to 1.14) for in vitro fertilisation in a modified natural cycle. These 95% confidence intervals do not extend below the predefined threshold of 0.69 for inferiority. Multiple pregnancy rates per ongoing pregnancy were 6% (7/121) after in vitro fertilisation with single embryo transfer, 5% (5/102) after in vitro fertilisation in a modified natural cycle, and 7% (8/119) after intrauterine insemination with ovarian hyperstimulation (one sided P=0.52 for in vitro fertilisation with single embryo transfer compared with intrauterine insemination with ovarian hyperstimulation; one sided P=0.33 for in vitro fertilisation in a modified natural cycle compared with intrauterine insemination with controlled ovarian hyperstimulation). CONCLUSIONS: In vitro fertilisation with single embryo transfer and in vitro fertilisation in a modified natural cycle were non-inferior to intrauterine insemination with controlled ovarian hyperstimulation in terms of the birth of a healthy child and showed comparable, low multiple pregnancy rates.Trial registration Current Controlled Trials ISRCTN52843371; Nederlands Trial Register NTR939.A J Bensdorp ... B W J Mol ... et al

    The INeS study: prevention of multiple pregnancies: a randomised controlled trial comparing IUI COH versus IVF e SET versus MNC IVF in couples with unexplained or mild male subfertility

    Get PDF
    BACKGROUND Multiple pregnancies are high risk pregnancies with higher chances of maternal and neonatal mortality and morbidity. In the past decades the number of multiple pregnancies has increased. This trend is partly due to the fact that women start family planning at an increased age, but also due to the increased use of ART. Couples with unexplained or mild male subfertility generally receive intrauterine insemination IUI with controlled hormonal stimulation (IUI COH). The cumulative pregnancy rate is 40%, with a 10% multiple pregnancy rate. This study aims to reveal whether alternative treatments such as IVF elective Single Embryo Transfer (IVF e SET) or Modified Natural Cycle IVF (MNC IVF) can reduce the number of multiple pregnancy rates, but uphold similar pregnancy rates as IUI COH in couples with mild male or unexplained subfertility. Secondly, the aim is to perform a cost effective analyses and assess treatment preference of these couples. METHODS/DESIGN We plan a multicentre randomised controlled clinical trial in the Netherlands comparing six cycles of intra-uterine insemination with controlled ovarian hyperstimulation or six cycles of Modified Natural Cycle (MNC) IVF or three cycles with IVF-elective Single Embryo Transfer (eSET) plus cryo-cycles within a time frame of 12 months. Couples with unexplained subfertility or mild male subfertility and a poor prognosis for treatment independent pregnancy will be included. Women with anovulatory cycles, severe endometriosis, double sided tubal pathology or serious endocrine illness will be excluded. Our primary outcome is the birth of a healthy singleton. Secondary outcomes are multiple pregnancy, treatment costs, and patient experiences in each treatment arm. The analysis will be performed according tot the intention to treat principle. We will test for non-inferiority of the three arms with respect to live birth. As we accept a 12.5% loss in pregnancy rate in one of the two IVF arms to prevent multiple pregnancies, we need 200 couples per arm (600 couples in total). DISCUSSION Determining the safest and most cost-effective treatment will ensure optimal chances of pregnancy for subfertile couples with substantially diminished perinatal and maternal complications. Should patients find the most cost-effective treatment acceptable or even preferable, this could imply the need for a world wide shift in the primary treatment. TRIAL REGISTRATION Current Controlled Trials ISRCTN 52843371Alexandra J Bensdorp, Els Slappendel, Carolien Koks, Jur Oosterhuis, Annemieke Hoek, Peter Hompes, Frank Broekmans, Harold Verhoeve, Jan Peter de Bruin, Janne Meije van Weert, Maaike Traas, Jacques Maas, Nicole Beckers, Sjoerd Repping, Ben W Mol, Fulco van der Veen and Madelon van Wel
    corecore