26 research outputs found

    A new test of uniformity for object orientations in astronomy

    Full text link
    We briefly present a new coordinate-invariant statistical test dedicated to the study of the orientations of transverse quantities of non-uniformly distributed sources on the celestial sphere. These quantities can be projected spin-axes or polarization vectors of astronomical sources.Comment: Proceedings IAU Symposium No. 306, 201

    Polarization alignments of radio quasars in JVAS/CLASS surveys

    Full text link
    We test the hypothesis that the polarization vectors of flat-spectrum radio sources (FSRS) in the JVAS/CLASS 8.4-GHz surveys are randomly oriented on the sky. The sample with robust polarization measurements is made of 41554155 objects and redshift information is known for 15311531 of them. We performed two statistical analyses: one in two dimensions and the other in three dimensions when distance is available. We find significant large-scale alignments of polarization vectors for samples containing only quasars (QSO) among the varieties of FSRS's. While these correlations prove difficult to explain either by a physical effect or by biases in the dataset, the fact that the QSO's which have significantly aligned polarization vectors are found in regions of the sky where optical polarization alignments were previously found is striking.Comment: 13 pages, 9 figures, submitted to MNRA

    A new analysis of quasar polarisation alignments

    Full text link
    We propose a new method to analyse the alignment of optical polarisation vectors from quasars. This method leads to a definition of intrinsic preferred axes and to a determination of the probability pσp^{\sigma} that the distribution of polarisation directions is random. This probability is found to be as low as 0.003% for one of the regions of redshift.Comment: 20 pages, 9 figure

    Alignment of quasar polarizations with large-scale structures

    Full text link
    We have measured the optical linear polarization of quasars belonging to Gpc-scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is of the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures.Comment: Accepted for publication in Astronomy and Astrophysic

    Anisotropic Orientations of Polarisations from quasar light

    Full text link
    Presentation of the foundations of a new statistical test dedicated to the polarisation orientations analysis

    Pulsar scintillation through thick and thin: Bow shocks, bubbles, and the broader interstellar medium

    Get PDF
    Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (≲ au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially overpressurized plasma in local ISM inhomogeneities, such as supernova remnants, H II regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-metre Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929+10 at screen distances spanning ~90 per cent of the pulsar’s 361 pc path length to the observer. Four arcs are observed toward B0355+54, with one arc yielding a screen distance as close as ∼105 au (<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context

    WALOP-South: A Four Camera One Shot Imaging Polarimeter for PASIPHAE Survey. Paper I -- Optical Design

    Get PDF
    The WALOP-South instrument will be mounted on the 1 m SAAO telescope in South Africa as part of the PASIPHAE program to carry out a linear imaging polarization survey of the Galactic polar regions in the optical band. Designed to achieve polarimetric sensitivity of 0.05 %0.05~\% across a 35×3535\times35 arcminute field of view, it will be capable of measuring the Stokes parameters I, q and u in a single exposure in the SDSS-r broadband and narrowband filters between 0.5 μm−0.7 μm0.5~{\mu}m - 0.7~{\mu}m. For each measurement, four images of the full field corresponding to linear polarization angles of 0 deg, 45 deg, 90 deg and 135 deg in the instrument coordinate system will be created on four detectors from which the Stokes parameters can be found using differential photometry. In designing the optical system, major challenges included correcting for the dispersion introduced by large split angle Wollaston Prisms used as analysers as well as other aberrations from the entire field to obtain imaging quality PSF at the detector. We present the optical design of the WALOP-South instrument which overcomes these challenges and delivers near seeing limited PSFs for the entire field of view.Comment: 31 pages, 18 Figures and 8 Tables. Accepted in the Journal of Astronomical Telescopes, Instruments, and System

    Voitures de société et mobilité durable. Diagnostic et enjeux

    Get PDF
    La voiture de société est, sans aucun doute, un des avantages de toute nature (ATN) les plus fréquemment proposés par les entreprises à leurs employés. Combien compte-t-on de voitures de société en Belgique ? Quels sont les profils des usagers ? Et quels sont les impacts sociétaux, environnementaux et économiques de cet « avantage »
    corecore