4 research outputs found

    Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data

    Get PDF
    Multiple myeloma (MM) remains mostly an incurable disease with a heterogeneous clinical evolution. Despite the availability of several prognostic scores, substantial room for improvement still exists. Promising results have been obtained by integrating clinical and biochemical data with gene expression profiling (GEP). In this report, we applied machine learning algorithms to MM clinical and RNAseq data collected by the CoMMpass consortium. We created a 50-variable random forests model (IAC-50) that could predict overall survival with high concordance between both training and validation sets (c-indexes, 0.818 and 0.780). This model included the following covariates: patient age, ISS stage, serum B2-microglobulin, first-line treatment, and the expression of 46 genes. Survival predictions for each patient considering the first line of treatment evidenced that those individuals treated with the best-predicted drug combination were significantly less likely to die than patients treated with other schemes. This was particularly important among patients treated with a triplet combination including bortezomib, an immunomodulatory drug (ImiD), and dexamethasone. Finally, the model showed a trend to retain its predictive value in patients with high-risk cytogenetics. In conclusion, we report a predictive model for MM survival based on the integration of clinical, biochemical, and gene expression data with machine learning tools

    Refining risk prediction in pediatric acute lymphoblastic leukemia through DNA methylation profiling

    No full text
    Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling

    Refining risk prediction in pediatric acute lymphoblastic leukemia through DNA methylation profiling

    No full text
    Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling

    Prognostic Stratification of Diffuse Large B-cell Lymphoma Using Clinico-genomic Models: Validation and Improvement of the LymForest-25 Model

    No full text
    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Despite notable therapeutic advances in the last decades, 30%–40% of affected patients develop relapsed or refractory disease that frequently precludes an infamous outcome. With the advent of new therapeutic options, it becomes necessary to predict responses to the standard treatment based on rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). In a recent communication, we presented a new machine learning model (LymForest-25) that was based on 25 clinical, biochemical, and gene expression variables. LymForest-25 achieved high survival prediction accuracy in patients with DLBCL treated with upfront immunochemotherapy. In this study, we aimed to evaluate the performance of the different features that compose LymForest-25 in a new UK-based cohort, which contained 481 patients treated with upfront R-CHOP for whom clinical, biochemical and gene expression information for 17 out of 19 transcripts were available. Additionally, we explored potential improvements based on the integration of other gene expression signatures and mutational clusters. The validity of the LymForest-25 gene expression signature was confirmed, and indeed it achieved a substantially greater precision in the estimation of mortality at 6 months and 1, 2, and 5 years compared with the cell-of-origin (COO) plus molecular high-grade (MHG) classification. Indeed, this signature was predictive of survival within the MHG and all COO subgroups, with a particularly high accuracy in the “unclassified” group. Integration of this signature with the International Prognostic Index (IPI) score provided the best survival predictions. However, the increased performance of molecular models with the IPI score was almost exclusively restricted to younger patients (<70 y). Finally, we observed a tendency towards an improved performance by combining LymForest-25 with the LymphGen mutation-based classification. In summary, we have validated the predictive capacity of LymForest-25 and expanded the potential for improvement with mutation-based prognostic classifications
    corecore