1,461 research outputs found

    Computing by nowhere increasing complexity

    Full text link
    A cellular automaton is presented whose governing rule is that the Kolmogorov complexity of a cell's neighborhood may not increase when the cell's present value is substituted for its future value. Using an approximation of this two-dimensional Kolmogorov complexity the underlying automaton is shown to be capable of simulating logic circuits. It is also shown to capture trianry logic described by a quandle, a non-associative algebraic structure. A similar automaton whose rule permits at times the increase of a cell's neighborhood complexity is shown to produce animated entities which can be used as information carriers akin to gliders in Conway's game of life

    Near-Perfect Correlation of the Resistance Components of Mesoscopic Samples at the Quantum Hall Regime

    Full text link
    We study the four-terminal resistance fluctuations of mesoscopic samples near the transition between the ν=2\nu=2 and the ν=1\nu=1 quantum Hall states. We observe near-perfect correlations between the fluctuations of the longitudinal and Hall components of the resistance. These correlated fluctuations appear in a magnetic-field range for which the two-terminal resistance of the samples is quantized. We discuss these findings in light of edge-state transport models of the quantum Hall effect. We also show that our results lead to an ambiguity in the determination of the width of quantum Hall transitions.Comment: As publishe

    P143 Articular cartilage repair using in situ polymerizable hydrogel implant in osteochondral defects

    Get PDF

    Reversible surface aggregation in pore formation by pardaxin

    Get PDF
    The mechanism of leakage induced by surface active peptides is not yet fully understood. To gain insight into the molecular events underlying this process, the leakage induced by the peptide pardaxin from phosphatidylcholine/ phosphatidylserine/cholesterol large unilamellar vesicles was studied by monitoring the rate and extent of dye release and by theoretical modeling. The leakage occurred by an all-or-none mechanism: vesicles either leaked or retained all of their contents. We further developed a mathematical model that includes the assumption that certain peptides become incorporated into the vesicle bilayer and aggregate to form a pore. The current experimental results can be explained by the model only if the surface aggregation of the peptide is reversible. Considering this reversibility, the model can explain the final extents of calcein leakage for lipid/peptide ratios of > 2000:1 to 25:1 by assuming that only a fraction of the bound peptide forms pores consisting of M = 6 +/- 3 peptides. Interestingly, less leakage occurred at 43 degrees C, than at 30 degrees C, although peptide partitioning into the bilayer was enhanced upon elevation of the temperature. We deduced that the increased leakage at 30 degrees C was due to an increase in the extent of reversible surface aggregation at the lower temperature. Experiments employing fluorescein-labeled pardaxin demonstrated reversible aggregation of the peptide in suspension and within the membrane, and exchange of the peptide between liposomes. In summary, our experimental and theoretical results support reversible surface aggregation as the mechanism of pore formation by pardaxin

    Two-Dimensional Electron Gas in InGaAs/InAlAs Quantum Wells

    Full text link
    We designed and performed low temperature DC transport characterization studies on two-dimensional electron gases confined in lattice-matched In0.53_{0.53}Ga0.47_{0.47}As/In0.52_{0.52}Al0.48_{0.48}As quantum wells grown by molecular beam epitaxy on InP substrates. The nearly constant mobility for samples with the setback distance larger than 50nm and the similarity between the quantum and transport life-time suggest that the main scattering mechanism is due to short range scattering, such as alloy scattering, with a scattering rate of 2.2 ps−1^{-1}. We also obtain the Fermi level at the In0.53_{0.53}Ga0.47_{0.47}As/In0.52_{0.52}Al0.48_{0.48}As surface to be 0.36eV above the conduction band, when fitting our experimental densities with a Poisson-Schr\"odinger model.Comment: Accepted in Applied Physics Letter
    • …
    corecore