120 research outputs found

    Germinal center architecture disturbance during Plasmodium berghei ANKA infection in CBA mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immune responses to malaria blood stage infection are in general defective, with the need for long-term exposure to the parasite to achieve immunity, and with the development of immunopathology states such as cerebral malaria in many cases. One of the potential reasons for the difficulty in developing protective immunity is the poor development of memory responses. In this paper, the potential association of cellular reactivity in lymphoid organs (spleen, lymph nodes and Peyer's patches) with immunity and pathology was evaluated during <it>Plasmodium berghei </it>ANKA infection in CBA mice.</p> <p>Methods</p> <p>CBA mice were infected with 1 × 10<sup>6 </sup><it>P. berghei </it>ANKA-parasitized erythrocytes and killed on days 3, 6–8 and 10 of infection. The spleen, lymph nodes and Peyer's patches were collected, fixed in Carson's formalin, cut in 5 μm sections, mounted in glass slides, stained with Lennert's Giemsa and haematoxylin-eosin and analysed with bright-field microscopy.</p> <p>Results</p> <p>Early (day 3) strong activation of T cells in secondary lymphoid organs was observed and, on days 6–8 of infection, there was overwhelming activation of B cells, with loss of conventional germinal center architecture, intense centroblast activation, proliferation and apoptosis but little differentiation to centrocytes. In the spleen, the marginal zone disappeared and the limits between the disorganized germinal center and the red pulp were blurred. Intense plasmacytogenesis was observed in the T cell zone.</p> <p>Conclusion</p> <p>The observed alterations, especially the germinal center architecture disturbance (GCAD) with poor centrocyte differentiation, suggest that B cell responses during <it>P. berghei </it>ANKA infection in mice are defective, with potential impact on B cell memory responses.</p

    Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized Serosal Cuticle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the major problems concerning dengue transmission is that embryos of its main vector, the mosquito <it>Aedes aegypti</it>, resist desiccation, surviving several months under dry conditions. The serosal cuticle (SC) contributes to mosquito egg desiccation resistance, but the kinetics of SC secretion during embryogenesis is unknown. It has been argued that mosquito SC contains chitin as one of its components, however conclusive evidence is still missing.</p> <p>Results</p> <p>We observed an abrupt acquisition of desiccation resistance during <it>Ae. aegypti </it>embryogenesis associated with serosal cuticle secretion, occurring at complete germ band extension, between 11 and 13 hours after egglaying. After SC formation embryos are viable on dry for at least several days. The presence of chitin as one of the SC constituents was confirmed through Calcofluor and WGA labeling and chitin quantitation. The <it>Ae. aegypti </it>Chitin Synthase A gene (<it>AaCHS1</it>) possesses two alternatively spliced variants, <it>AaCHS1a </it>and <it>AaCHS1b</it>, differentially expressed during <it>Ae. aegypti </it>embryonic development. It was verified that at the moment of serosal cuticle formation, <it>AaCHS1a </it>is the sole variant specifically expressed.</p> <p>Conclusion</p> <p>In addition to the peritrophic matrix and exoskeleton, these findings confirm chitin is also present in the mosquito serosal cuticle. They also point to the role of the chitinized SC in the desiccation resistance of <it>Ae. aegypti </it>eggs. <it>AaCHS1a </it>expression would be responsible for SC chitin synthesis. With this embryological approach we expect to shed new light regarding this important physiological process related to the <it>Ae. aegypti </it>life cycle.</p

    Schistosoma mansoni Coinfection Attenuates Murine Toxoplasma gondii-Induced Crohn's-Like Ileitis by Preserving the Epithelial Barrier and Downregulating the Inflammatory Response

    Get PDF
    Background and aims: Mice orally infected with T. gondii develop Crohn's disease (CD)-like enteritis associated with severe mucosal damage and a systemic inflammatory response, resulting in high morbidity and mortality. Previously, helminthic infections have shown therapeutic potential in experimental colitis. However, the role of S. mansoni in T. gondii-induced CD-like enteritis has not been elucidated. Our study investigated the mechanisms underlying T. gondii-induced ileitis and the potential therapeutic effect of S. mansoni coinfection.Methods: C57BL/6 mice were infected by subcutaneous injection of cercariae of the BH strain of S. mansoni, and 7–9 weeks later, they were orally infected with cysts of the ME49 strain of T. gondii. After euthanasia, the ileum was removed for histopathological analysis; staining for goblet cells; immunohistochemistry characterizing mononuclear cells, lysozyme expression, apoptotic cells, and intracellular pathway activation; and measuring gene expression levels by real-time PCR. Cytokine concentrations were measured in the serial serum samples and culture supernatants of the ileal explants, in addition to myeloperoxidase (MPO) activity.Results:T. gondii-monoinfected mice presented dense inflammatory cell infiltrates and ulcerations in the terminal ileum, with abundant cell extrusion, apoptotic bodies, and necrosis; these effects were absent in S. mansoni-infected or coinfected animals. Coinfection preserved goblet cells and Paneth cells, remarkably depleted in T. gondii-infected mice. Densities of CD4- and CD11b-positive cells were increased in T. gondii- compared to S. mansoni-infected mice and controls. MPO was significantly increased among T. gondii-mice, while attenuated in coinfected animals. In T. gondii-infected mice, the culture supernatants of the explants showed increased concentrations of TNF-alpha, IFN-gamma, and IL-17, and the ileal tissue revealed increased expression of the mRNA transcripts for IL-1 beta, NOS2, HMOX1, MMP3, and MMP9 and activation of NF-kappa B and p38 MAPK signaling, all of which were counterregulated by S. mansoni coinfection.Conclusion:S. mansoni coinfection attenuates T. gondii-induced ileitis by preserving mucosal integrity and downregulating the local inflammatory response based on the activation of NF-kappa B and MAPK. The protective function of prior S. mansoni infection suggests the involvement of innate immune mechanisms and supports a conceptually new approach to the treatment of chronic inflammatory diseases, including CD

    Physiological and Morphological Aspects of Aedes aegypti Developing Larvae: Effects of the Chitin Synthesis Inhibitor Novaluron

    Get PDF
    Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes

    Sequential morphological characteristics of murine fetal liver hematopoietic microenvironment in Swiss Webster mice

    Get PDF
    Embryonic hematopoiesis occurs via dynamic development with cells migrating into various organs. Fetal liver is the main hematopoietic organ responsible for hematopoietic cell expansion during embryologic development. We describe the morphological sequential characteristics of murine fetal liver niches that favor the settlement and migration of hematopoietic cells from 12 days post-coitum (dpc) to 0 day post-partum. Liver sections were stained with hematoxylin and eosin, Lennert’s Giemsa, Sirius Red pH 10.2, Gomori’s Reticulin, and Periodic Acid Schiff/Alcian Blue pH 1.0 and pH 2.5 and were analyzed by bright-field microscopy. Indirect imunohistochemistry for fibronectin, matrix metalloproteinase-1 (MMP-1), and MMP-9 and histochemistry for naphthol AS-D chloroacetate esterase (NCAE) were analyzed by confocal microscopy. The results showed that fibronectin was related to the promotion of hepatocyte and trabecular differentiation; reticular fibers did not appear to participate in fetal hematopoiesis but contributed to the physical support of the liver after 18 dpc. During the immature phase, hepatocytes acted as the fundamental stroma for the erythroid lineage. The appearance of myeloid cells in the liver was related to perivascular and subcapsular collagen, and NCAE preceded MMP-1 expression in neutrophils, an occurrence that appeared to contribute to their liver evasion. Thus, the murine fetal liver during ontogenesis shows two different phases: one immature and mainly endodermic (<14 dpc) and the other more developed (endodermic-mesenchymal; >15 dpc) with the maturation of hepatocytes, a better definition of trabecular pattern, and an increase in the connective tissue in the capsule, portal spaces, and liver parenchyma. The decrease of hepatic hematopoiesis (migration) coincides with hepatic maturation
    • …
    corecore