238 research outputs found

    Wide-range optical studies on various single-walled carbon nanotubes: the origin of the low-energy gap

    Full text link
    We present wide-range (3 meV - 6 eV) optical studies on freestanding transparent carbon nanotube films, made from nanotubes with different diameter distributions. In the far-infrared region, we found a low-energy gap in all samples investigated. By a detailed analysis we determined the average diameters of both the semiconducting and metallic species from the near infrared/visible features of the spectra. Having thus established the dependence of the gap value on the mean diameter, we find that the frequency of the low energy gap is increasing with increasing curvature. Our results strongly support the explanation of the low-frequency feature as arising from a curvature-induced gap instead of effective medium effects. Comparing our results with other theoretical and experimental low-energy gap values, we find that optical measurements yield a systematically lower gap than tunneling spectroscopy and DFT calculations, the difference increasing with decreasing diameter. This difference can be assigned to electron-hole interactions.Comment: 9 pages, 8 figures, to be published in Physical Review B, supplemental material attached v2: Figures 1, 7 and 8 replaced, minor changes to text; v3: Figures 3, 4 and 5 replaced, minor changes to tex

    Phase-slip avalanches in the superflow of 4^4He through arrays of nanopores

    Full text link
    Recent experiments by Sato et al. [1] have explored the dynamics of 4^4He superflow through an array of nanopores. These experiments have found that, as the temperature is lowered, phase-slippage in the pores changes its character, from synchronous to asynchronous. Inspired by these experiments, we construct a model to address the characteristics of phase-slippage in superflow through nanopore arrays. We focus on the low-temperature regime, in which the current-phase relation for a single pore is linear, and thermal fluctuations may be neglected. Our model incorporates two basic ingredients: (1) each pore has its own random value of critical velocity (due, e.g., to atomic-scale imperfections), and (2) an effective inter-pore coupling, mediated through the bulk superfluid. The inter-pore coupling tends to cause neighbours of a pore that has already phase-slipped also to phase-slip; this process may cascade, creating an avalanche of synchronously slipping phases. As the temperature is lowered, the distribution of critical velocities is expected to effectively broaden, owing to the reduction in the superfluid healing length, leading to a loss of synchronicity in phase-slippage. Furthermore, we find that competition between the strength of the disorder in the critical velocities and the strength of the inter-pore interaction leads to a phase transition between non-avalanching and avalanching regimes of phase-slippage. [1] Sato, Y., Hoskinson, E. Packard, R. E. cond-mat/0605660.Comment: 8 pages, 5 figure

    Charge transfer excitons in optical absorption spectra of C60-dimers and polymers

    Full text link
    Charge-transfer (CT) exciton effects are investigated for the optical absorption spectra of crosslinked C60 systems by using the intermediate exciton theory. We consider the C60-dimers, and the two (and three) molecule systems of the C60-polymers. We use a tight-binding model with long-range Coulomb interactions among electrons, and the model is treated by the Hartree-Fock approximation followed by the single-excitation configuration interaction method. We discuss the variations in the optical spectra by changing the conjugation parameter between molecules. We find that the total CT-component increases in smaller conjugations, and saturates at the intermediate conjugations. It decreases in the large conjugations. We also find that the CT-components of the doped systems are smaller than those of the neutral systems, indicating that the electron-hole distance becomes shorter in the doped C60-polymers.Comment: Figures should be requested to the autho

    Local superfluid densities probed via current-induced superconducting phase gradients

    Full text link
    We have developed a superconducting phase gradiometer consisting of two parallel DNA-templated nanowires connecting two thin-film leads. We have ramped the cross current flowing perpendicular to the nanowires, and observed oscillations in the lead-to-lead resistance due to cross-current-induced phase differences. By using this gradiometer we have measured the temperature and magnetic field dependence of the superfluid density and observed an amplification of phase gradients caused by elastic vortex displacements. We examine our data in light of Miller-Bardeen theory of dirty superconductors and a microscale version of Campbell's model of field penetration.Comment: 5 pages, 6 figure

    Three-dimensional electronic instabilities in polymerized solid A1C60

    Full text link
    The low-temperature structure of A1C60 (A=K, Rb) is an ordered array of polymerized C60 chains, with magnetic properties that suggest a non-metallic ground state. We study the paramagnetic state of this phase using first-principles electronic-structure methods, and examine the magnetic fluctuations around this state using a model Hamiltonian. The electronic and magnetic properties of even this polymerized phase remain strongly three dimensional, and the magnetic fluctuations favor an unusual three-dimensional antiferromagnetically ordered structure with a semi-metallic electronic spectrum.Comment: REVTeX 3.0, 10 pages, 4 figures available on request from [email protected]

    Alfvén Eigenmodes in shear reversed plasmas

    Get PDF
    Experiments on JT-60U and JET have shown that plasma configurations with shear reversal are prone to the excitation of unusual AlfvĂ©n eigenmodes by energetic particles. These modes emerge outside the TAE frequency gap, where one might expect them to be strongly damped. The modes often appear in bunches and they exhibit a quasi-periodic pattern of predominantly upward frequency sweeping (AlfvĂ©n Cascades) as the safety factor q changes in time. This work presents a theory that explains the key features of the observed unusual modes including their connection to TAE’s as well as the modifications of TAE’s themselves near the shear reversal point. The developed theory has been incorporated into a reduced numerical model and verified with full geometry codes. JET experimental data on AlfvĂ©n spectroscopy have been simulated to infer the mode numbers and the evolution of qmin in the discharge. This analysis confirms the values of q that characterize the internal transport barrier triggering in reversed shear plasmas

    Vibrational spectra of C60C8H8 and C70C8H8 in the rotor-stator and polymer phases

    Full text link
    C60-C8H8 and C70-C8H8 are prototypes of rotor-stator cocrystals. We present infrared and Raman spectra of these materials and show how the rotor-stator nature is reflected in their vibrational properties. We measured the vibrational spectra of the polymer phases poly(C60C8H8) and poly(C70C8H8) resulting from a solid state reaction occurring on heating. Based on the spectra we propose a connection pattern for the fullerene in poly(C60C8H8), where the symmetry of the C60 is D2h. On illuminating the C60-C8H8 cocrystal with green or blue light a photochemical reaction was observed leading to a similar product to that of the thermal polymerization.Comment: 26 pages, 8 figures, to appear in Journal of Physical Chemistry B 2nd version: minor changes in wording, accepted version by journa

    Structure and properties of the stable two-dimensional conducting polymer Mg5C60

    Get PDF
    We present a study on the structural, spectroscopic, conducting, and magnetic properties of Mg5C60, which is a two-dimensional (2D) fulleride polymer. The polymer phase is stable up to the exceptionally high temperature of 823 K. The infrared and Raman studies suggest the formation of single bonds between the fulleride ions and possibly Mg-C-60 covalent bonds. Mg5C60 is a metal at ambient temperature, as shown by electron spin resonance and microwave conductivity measurements. The smooth transition from a metallic to a paramagnetic insulator state below 200 K is attributed to Anderson localization driven by structural disorder

    Operation of a superconducting nanowire quantum interference device with mesoscopic leads

    Full text link
    A theory describing the operation of a superconducting nanowire quantum interference device (NQUID) is presented. The device consists of a pair of thin-film superconducting leads connected by a pair of topologically parallel ultra-narrow superconducting wires. It exhibits intrinsic electrical resistance, due to thermally-activated dissipative fluctuations of the superconducting order parameter. Attention is given to the dependence of this resistance on the strength of an externally applied magnetic field aligned perpendicular to the leads, for lead dimensions such that there is essentially complete and uniform penetration of the leads by the magnetic field. This regime, in which at least one of the lead dimensions lies between the superconducting coherence and penetration lengths, is referred to as the mesoscopic regime. The magnetic field causes a pronounced oscillation of the device resistance, with a period not dominated by the Aharonov-Bohm effect through the area enclosed by the wires and the film edges but, rather, in terms of the geometry of the leads, in contrast to the well-known Little-Parks resistance of thin-walled superconducting cylinders. A theory, encompassing this phenomenology, is developed through extensions, to the setting of parallel superconducting wires, of the Ivanchenko-Zil'berman-Ambegaokar-Halperin theory for the case of short wires and the Langer-Ambegaokar-McCumber-Halperin theory for the case of longer wires. It is demonstrated that the NQUID acts as a probe of spatial variations in the superconducting order parameter.Comment: 20 pages, 18 figure
    • 

    corecore