7 research outputs found

    DNA barcoding for assessment of exotic molluscs associated with maritime ports in northern Iberia

    Get PDF
    Ports are gateways for aquatic invasions. New arrivals from maritime traffic and disturbed environmental conditions can promote the settlement of exotic species. Molluscs fall into the most prevalent group of invasive species and can have a tremendous impact on aquatic ecosystems. Here we have investigated exotic molluscs in three ports with different intensities of maritime traffic in the Cantabrian Sea. DNA barcodes were employed to identify the species using BLASTn and BOLD IDS assignment. Deep morphological analysis using diagnostic criteria confirmed BLAST species assignation based on COI and 16S rRNA genes. Results confirmed the usefulness of DNA barcoding for detecting exotic species that are visually similar to native species. Three exotic bivalves were identified: Ostrea stentina (dwarf oyster), the highly invasive Crassostrea gigas (Pacific oyster) and Xenostrobus securis (pygmy mussel). This is the first record of O. stentina in the Bay of Biscay and the second of X. securis in the Cantabrian Sea. Furthermore, we report on the presence of the cryptogenic mussel Mytilaster minimus in the central Cantabrian Sea. These exotic species might have been overlooked due to their phenotypic similarity with co-occurring oyster and mussel species. This study illustrates how combining morphological and DNA taxonomic analysis can help in port and marina biosecurity surveys

    Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding

    Get PDF
    DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis)was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproductionwas evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages

    Staphylococcal biofilm on wedding rings worn by laboratory workers

    No full text
    Hands of healthcare workers play essential role in the spreading of antimicrobial-resistant microor-ganisms in and out of the healthcare settings. Less is known about the role of laboratory workers (LWs). The aim of our study was to evaluate the presence of biofilm-forming staphylococci on the surface of jewelry rings of LWs and their antimicrobial susceptibility pattern.A total of 79 LWs from eight different microbiology laboratories that process and analyze specimens from the tertiary care hospitals in Belgrade, Serbia participated in the study. The study was reviewed and approved by the institutional review boards at hospitals. Samples were taken after hand washing. Bacteria on LWs wedding rings were detected with the rolling method, and further analyzed in order to determine the number of colony forming unit (CFU) per ring, species of bacteria and their antimi-crobial susceptibility pattern, methicillin resistance and biofilm-producing capacity in vitro.Staphylococci were recovered from 60.8% of wedding rings. All strains produced biofilm (25% weak, 56.2% moderate and 18.8% large amount), with significant difference between species (P < 0.001). Staphylococcus aureus and Staphylococcus epidermidis formed the largest amount of biofilm and had the largest number of CFU per ring. Staphylococci were most commonly resistant to penicillin (66.7%), tetracycline (50.0%), and erythromycin (45.8%); 41.7% of isolates was multidrug resistant and mecA gene was detected in five strains. All strains were susceptible to linezolid, vancomycin, teicoplanin and tigecycline.Staphylococci colonize LWs wedding rings, form biofilm on it, have multidrug resistant phenotype and/or carry mecA gene, representing a significant reservoir for the spreading of microorganisms and resistance. As far as we know, our study is the first that address this topic in laboratory workers
    corecore