5,092 research outputs found

    On the 1-loop calculations of softly broken fermion-torsion theory in curved space using the Stuckelberg procedure

    Full text link
    The soft breaking of gauge or other symmetries is the typical Quantum Field Theory phenomenon. In many cases one can apply the Stuckelberg procedure, which means introducing some additional field (or fields) and restore the gauge symmetry. The original softly broken theory corresponds to a particular choice of the gauge fixing condition. In this paper we use this scheme for performing quantum calculations for fermion-torsion theory, softly broken by the torsion mass in arbitrary curved spacetime.Comment: Talk given at the 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, Joao Pessoa, Brazil, 29 Jun - 5 Jul 2008. 4 pages and one figur

    Boolean networks with robust and reliable trajectories

    Full text link
    We construct and investigate Boolean networks that follow a given reliable trajectory in state space, which is insensitive to fluctuations in the updating schedule, and which is also robust against noise. Robustness is quantified as the probability that the dynamics return to the reliable trajectory after a perturbation of the state of a single node. In order to achieve high robustness, we navigate through the space of possible update functions by using an evolutionary algorithm. We constrain the networks to having the minimum number of connections required to obtain the reliable trajectory. Surprisingly, we find that robustness always reaches values close to 100 percent during the evolutionary optimization process. The set of update functions can be evolved such that it differs only slightly from that of networks that were not optimized with respect to robustness. The state space of the optimized networks is dominated by the basin of attraction of the reliable trajectory.Comment: 12 pages, 9 figure

    Enhanced Inter-Prediction Via Shifting Transformation in the H.264/AVC

    Get PDF
    OA Monitor Exercis

    H.264/AVC to HEVC Video Transcoder Based on Dynamic Thresholding and Content Modeling

    Get PDF

    Emergence of robustness against noise: A structural phase transition in evolved models of gene regulatory networks

    Full text link
    We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as the selective pressure is increased and identify a phase transition from a random topology to a "segregated core" structure, where a smaller and more densely connected subset of the nodes is responsible for most of the regulation in the network. This segregated structure is very similar qualitatively to what is found in gene regulatory networks, where only a much smaller subset of genes --- those responsible for transcription factors --- is responsible for global regulation. We obtain the full phase diagram of the evolutionary process as a function of selective pressure and the average number of inputs per node. We compare the theoretical predictions with Monte Carlo simulations of evolved networks and with empirical data for Saccharomyces cerevisiae and Escherichia coli.Comment: 12 pages, 10 figure

    Boolean networks with reliable dynamics

    Full text link
    We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen phase.Comment: 11 Pages, 15 figure
    • …
    corecore