
H.264/AVC to HEVC video transcoder based on dynamic thresholding and

content modeling
Peixoto, E; Shanableh, T; Izquierdo, E

 

 

 

 

 

“The final publication is available at

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6560375”

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11943

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77040290?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11943


1

H.264/AVC to HEVC Video Transcoder based on
Dynamic Thresholding and Content Modeling

Eduardo Peixoto,Member, IEEE,Tamer Shanableh,Member, IEEE,and Ebroul Izquierdo,Senior Member, IEEE

Abstract—The new video coding standard, HEVC, was de-
veloped to succeed the current standard, H.264/AVC, as the
state of the art in video compression. However, there is a lot of
legacy content encoded with H.264/AVC. This paper proposes and
evaluates several transcoding algorithms from the H.264/AVC to
the HEVC format. In particular, a novel transcoding architectur e,
in which the first frames of the sequence are used to compute
the parameters so that the transcoder can “learn” the mapping
for that particular sequence, is proposed. Then, two types of
mode mapping algorithms are proposed. In the first solution,
a single H.264/AVC coding parameter is used to determine
the outgoing HEVC partitions using dynamic thresholding. The
second solution uses linear discriminant functions to map the
incoming H.264/AVC coding parameters to the outgoing HEVC
partitions. This paper contains experiments designed to study
the impact of the number of frames used for training in
the transcoder. Comparisons with existing transcoding solutions
reveal that the proposed work results in lower rate-distortion
loss at a competitive complexity performance.

Index Terms—Transcoding, HEVC, machine learning.

I. I NTRODUCTION

T HE new video coding standard, so called High Efficient
Video Coding (HEVC) [1], developed by the JCT-VC

group to replace the current H.264/AVC standard [2]. The
main goal of the HEVC codec is not to provide video
compression with different features, such as error correction or
scalability capabilities, but rather to significantly improve the
rate distortion performance, compared to the current standard,
H.264/AVC, in order to allow for new applications, such as
beyond high-definition resolutions (so called4K, 3840×2160
pixels, and8K, 7680× 4320 pixels).

The motivation for a H.264/AVC to HEVC transcoder
is twofold: (i) to be ready to promote inter-operability for
the legacy video encoded in H.264/AVC format, when new
applications using the HEVC emerge; and (ii) to be able to
take advantage of the superior rate-distortion performance of
the HEVC. The first will be useful when the first applications
are launched that use the new standard, while the second could
be used straight away to migrate the abundant existent video
content encoded in the H.264/AVC format.
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In this paper, we build on our previous work [3], in which
we proposed a H.264/AVC to HEVC transcoder based on
a metric called Motion Vector Variance Distance [3], and
another work in which we proposed a MPEG-2 to HEVC
transcoder based on content modeling [4]. Here, we explore
other transcoding solutions based on a content-based modeling
approach, in which the transcoder adapts the transcoding
parameters based on the contents of the sequence being
transcoded, and further evaluates the concept of content-based
modeling on the transcoder efficiency.

By definition, transcoding is the process that converts from
one compressed bitstream (called the source or incoming bit-
stream) to another compressed bitstream (called the transcoded
or outgoing bitstream) [5], [6], [7]. Several properties may
change during transcoding: the video format [8], [9], the
bitrate of the video [10], [11], the frame rate [12], [13], the
spatial resolution [14], [15], the coding tools used (i.e.,one
bitstream might useB frames, while the other might not,
or scalability layers are added to the target bitstream) [16],
and even the insertion of new information on the video, such
as watermarking [17], hidden data [18] or a layer for error
resilience [19].

In transcoding, it is always possible to use a combination
of a suitable decoder and encoder in tandem, completely
decoding the incoming bitstream and then completely re-
encoding it in the target format. Here, this is defined as the
trivial transcoder. While this approach usually achieves high
quality of the transcoded sequence and can be used for any
target conditions, it is not efficient from the point of view of
complexity.

The two main categories of transcoders are:homogeneous
transcoding (the conversion of bitstreams within the same
format) andheterogeneous transcoding(i.e., between different
formats). Homogeneous transcoding is commonly used to
change the bitstream in order to adapt it to a new functionality,
such as a different bitrate or spatio-temporal resolution.Het-
erogeneous transcoding can also provide the functionalities of
homogeneous transcoding, such as reduction of bit rate and
change of spatio-temporal resolution, but it is mainly defined
by the change of format. The H.264/AVC to HEVC transcoder
falls in the latter category.

In many solutions, heterogeneous transcoding is achieved
by completely decoding the source stream and re-encoding it
in the target format reusing information present in the source
bitstream to speed up the transcoding. This is known as the
cascaded pixel domain approach[5], [6].

This paper is organised as follows: Section II provides a
review of the relevant literature on heterogeneous transcoding,
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especially on algorithms for mode mapping, which is the main
focus of this paper. Section III details our previous work
on the topic, which is used as benchmark to evaluate the
transcoding options proposed here, while Section IV details
these transcoding options. Finally, Section V presents the
experiments and Section VI concludes the paper.

II. RELEVANT L ITERATURE

A simple way of classifying the contributions reported in the
transcoding literature is to separate them into algorithmsfor
mode mapping, algorithms for motion vector approximation
and algorithms for motion vector refinement. The goal of
the mode mapping algorithms is to use information on the
incoming bitstream in order to avoid testing all modes for
the target format. On the other hand, the goal of the motion
vector approximation algorithms is to maximize the reuse
of the motion vectors in the incoming bitstream in order to
avoid costly motion estimation operations in the target encoder.
Finally, the goal of the motion vector refinement algorithms
is to improve the reused and approximated motion vectors so
that a good prediction can be achieved.

The HEVC is able to use the same reference frame structure
as the H.264/AVC [20] and, if this is the case, it would not
need motion vector approximation algorithms. At the same
time, for the HM reference software [21], [22], the impact
of the motion estimation module in the complexity is much
smaller than the impact for other implementations, and so MV
refinement algorithms would not yield the same gain as in
other transcoders. However, the HEVC uses a large number
of modes, making mode mapping algorithms very important
for the transcoder.

In order to reuse the coding mode of a particular macroblock
in the incoming bitstream, a range of algorithms have been
proposed. A simple mode mapping algorithm was proposed
in the context of a H.264/AVC to MPEG-2 transcoder [8]. In
this algorithm, the H.264/AVC macroblock types are classified
in three categories, skipped, inter and intra, for macroblocks
encoded in SKIP mode, inter or intra modes, respectively.
Then, in the transcoder, only the modes associated with these
classes are tested. Another simple algorithm, used in the
context of VC-1 to H.264/AVC transcoding, was proposed
[23]. In this work, since the VC-1 codec offers a smaller
number of modes than the H.264/AVC (for instance, only
blocks sizes of16 × 16 and 8 × 8 are used for motion
compensation, and there is no skip mode for a macroblock),
the transcoder uses both the macroblock type and the size of
the transform used in VC-1, proposing some rules based on
heuristics, summarized in the form of a look-up table, to decide
which modes are tested in the outgoing H.264/AVC video.

The block mode statistics are used in a MPEG-4 to
H.264/AVC transcoder [24]. In this work, several test se-
quences are transcoded using a trivial transcoder in order
to gather the macroblock mode conversion statistics. This
information is then used to generate a look-up table, which is
used during transcoding to decide which H.264/AVC modes
are tested according to the MPEG-4 mode. A similar approach
was used in a H.264/AVC to MPEG-4 transcoder [25].

In other reported solutions, the idea of using the block mode
statistics is expanded. Machine learning algorithms are used
to map the modes in the incoming bitstream and decide how
the modes in the target codec are tested, in the context of
MPEG-2 to H.264/AVC transcoding [26], [27], [28]. All these
solutions are built around similar ideas: first, few frames of
test sequences are transcoded using a trivial transcoder. For
these frames, some features are computed and stored for each
macroblock, along with the optimal mode used to encode said
macroblocks. Then, a machine learning approach is used to
generate an algorithm to map features computed using the
incoming bitstreams into modes to be tested in the target
codec. The training is performed offline, with the goal of
developing a single, generalized, mapping that can be used for
transcoding any MPEG-2 video. In the first of these solutions
[26], the features used include the MPEG-2 macroblock coding
mode, the coded block pattern, and the means and variances
for each4×4 residual block, generating a total of37 features.
In the other solutions [27], [28], the list of features was
expanded to include the MPEG-2 DCT coefficients, neighbour-
ing macroblock information, coded block pattern, the motion
vectors, the mean and variance of the4 × 4 residual blocks,
and the variance of the means and mean of variances for
each group of means and variances, generating a total of131
features. A similar approach was presented by some of the
same authors in the context of a Wyner-Ziv to H.264/AVC
transcoder [29]. In this solution, three features are used to
generate the mapping algorithm, being the SAD of the residual
computed in the Wyner-Ziv decoding process, the length of the
motion vector generated by the Wyner-Ziv decoding process,
and information from the Wyner-Ziv reconstruction process,
and the same offline training process is used.

A transcoding solution from H.264/AVC to HEVC has
also been proposed by Zhang et. al. [30]. In this work, a
method to transcode intra frames is proposed, mainly based
on selective merging of the incoming H.264/AVC intra modes
and mapping them to larger HEVC CUs and PUs, according
to the prediction direction found in the H.264/AVC bitstream.
For inter pictures, it builds on the power-spectrum based rate-
distortion optimization (PS-RDO) [31]. In this method, the
cost of a motion vector in the transcoder is estimated from the
motion vector variation and power-spectrum of the prediction
signal resulting from that motion vector. The PS-RDO model
is used to determine both the CU partitioning and the motion
vector used for each PU.

III. PREVIOUS WORK

In this work, we build on our previous work of H.264/AVC
to HEVC transcoder [3]. Two transcoders were proposed: one
is based on MV reuse; and the other is based on a metric
called MV Variance Distance. Both are briefly discussed here,
as they are used to evaluate the proposed transcoders in this
paper.

All transcoding methods presented in this paper are based
on mode mapping algorithms. Therefore, the main idea is to
use the H.264/AVC information in order to decide the CU
and PU partitioning, instead of testing every possible CU and
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PUs. In this section, and for the remainder of this paper, the
testing of a CU is defined as the assessment of the best way to
encode that particular CU (i.e., deciding the parameters - PU
partitioning, motion vectors, transforms, etc...) and producing
a rate-distortion cost. Similarly, the testing of a motion vector
is defined as the evaluation of the cost of that motion vector,
and comparing this cost with the motion vectors that were
previously tested for that particular PU. In all cases, the default
metrics used in the HM reference software are used.

A. A Transcoder based on MV Reuse

This simple transcoder was presented before [3] for the sole
purpose of evaluating the effect of the motion vector reuse
technique [32], [33] in a H.264/AVC to HEVC transcoder,
which is a technique that is ubiquitous in transcoding. It is
not by any means designed to be a very efficient transcoder,
but it is useful to identify the areas where the largest gain,in
terms of transcoding efficiency, can be achieved. The workflow
of the algorithm is the same for each coding unit (CU) in the
HEVC, and it is based on two main ideas:

1) If any part of this CU was encoded in intra mode in
H.264/AVC, then all possible intra and inter modes are
tested; otherwise, only the inter modes are tested.

2) For any inter partition unit (PU), all H.264/AVC motion
vectors within the current PU are tested. The motion
vectors are reused at integer-pixel level, without any
further refinement at this level. Then, at half-pixel and
quarter-pixel, the default HM search is applied (testing
the eight neighbours at half-pixel level, then the eight
neighbours at quarter-pixel level).

Note that this transcoder reuses the incoming motion vec-
tors, but not the partitioning. All inter modes available in
the HEVC are considered, including the Asymmetric Motion
Partition, AMP [34] - for these partitions, the AMP speed-
up setting, present in theHM4.0rc1 reference software [21],
is enabled. The remaining HEVC settings are the same as
the low-delay configuration forHM4.0rc1, including the
fast mode decision flag (which is enabled). Therefore, this
transcoder saves complexity only by avoiding the motion
estimation (which is performed using a fast motion algorithm,
based on the Enhanced Predictive Zonal Search, EPZS [35]),
and by not testing all intra modes.

B. A Transcoder based on MV Variance Distance

This transcoder is based on a similarity metric, the MV
Variance Distance, and, according to this metric, make the
decision of how to test a particular CU. The MV Variance
Distance metric produces a valueυ ≥ 0 for each CU that can
be tested in the HEVC. This metric is based on the variance
of the H.264/AVC motion vectors, and it is computed as:

υ =

√

(σ2
x)

2
+
(

σ2
y

)2

(1)

where σ2

x and σ2

y are the variances of each component of
the H.264/AVC motion vectors within the CU. If the motion
vectors do not have the same reference frame, they are scaled
using the formula:

mvn→n−β =

(

β

α

)

·mvn→n−α (2)

wheren is the current frame,n − α is the reference frame
used by the H.264/AVC motion vector andn−β is the target
reference frame. If the scaling is necessary, then all motion
vectors are scaled to the frame which is closest to the current
frame. If any part of this CU was encoded using an intra
mode, then the metric does not produce a value. Before the
metric is computed, the motion vectors are propagated to the
4×4 blocks (i.e., the minimum size in H.264/AVC), and then
the variance is calculated. This way, the motion vectors are
weighted according to the area that they represent.

The idea of using this metric is that, if a large area has a
low valueυ, it means that all motion vectors in this area are
similar, and thus it is more likely that this partition will be
encoded using a larger CU in the HEVC, as it is more likely
that a single motion vector will accurately predict the whole
CU. On the other hand, if the same area has a high valueυ,
then the motion vectors within this area are very different,and
thus it is less likely that this block will be encoded using a
large CU in the HEVC (meaning it is more likely that it will
be split). This way, it is possible to combine the information
for different H.264/AVC macroblocks and make a decision for
a large block in the HEVC codec.

Two thresholds are used to decide how a particular CU will
be tested, namelyTlow andThigh, which defines three different
regionsR1 (υ ≤ Tlow), R2 (Tlow < υ ≤ Thigh) and R3

(υ > Thigh).
The transcoder algorithm works independently for each CU,

regardless of the CU size. The possible prediction units (PUs)
that can be tested are divided in four groups: (i) SKIP; (ii) inter
2N×2N ; (iii) all remaining inter modes (2N×N , N×2N , the
AMP modes, andN×N ); and (iv) the intra modes (2N×2N ,
N×N and PCM). In addition, the transcoder can decide if the
CU will be split or not (if so, the CU is split in four sub-CUs,
as usual). Then, depending on the value of the MV Variance
Distanceυ for this particular CU, four different settings can
be used:

1) if the CU is considered similar (i.e., ifυ ≤ Tlow), then
only the PU groups (i) and (ii) will be tested and the
CU will not be split;

2) if the CU is considered as dissimilar (i.e., ifυ > Thigh),
then only the PU groups (i) and (iii) will be tested, and
the CU will be split.

3) if the CU is not similar nor dissimilar (i.e., ifTlow <

υ ≤ Thigh), then the PU groups (i), (ii) and (iii) (i.e.,
all inter modes) will be tested and the CU will be split;
and

4) if the valueυ cannot be computed (i.e., if
one H.264/AVC partition within the CU was encoded as
intra), then all PU groups are tested and the CU is split.

The algorithm starts from the largest CU size (64 × 64),
computing the MV Variance Distanceυ for that CU. Then,
according to theυ value for the CU, the transcoder tests only
the PUs for the groups indicated by the aforementioned rules.
If the rules state that the CU should not be split (i.e., ifυ ≤
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Tlow), then the transcoder selects the best mode, according to
the modes tested, and proceeds to the next CU. If the CU is
split, the algorithm is applied in the same manner to each of
the four sub-CUs, computing a new similarity valueυ for the
sub-CUs, until the final possible depth is reached.

IV. PROPOSEDTRANSCODINGSOLUTIONS

The transcoder presented in the previous section offers a
good rate-distortion and complexity performance, and offers
an interesting insight into tackling the H.264/AVC to HEVC
transcoder. If the best mode to encode a given CU could
be accurately predicted from information in the H.264/AVC
bitstream, then a large amount of computation could be saved,
with virtually no quality loss. Even if the best mode cannot
be predicted, if the less likely modes are ruled out, then the
transcoding could still be made faster with a small penalty in
rate-distortion performance.

In the reviewed transcoder based on MV Variance Distance,
however, the choice of the thresholds is still a concern.
First, the thresholds are used regardless of the depth of the
CU, which gives the same tolerance to decide the split for
a 64 × 64 partition and a16 × 16 partition. Second, and
most important, the same thresholds are used for different
sequences, regardless of the content of the sequences or the
quantization parameters used to encode it. Finally, only the
MV Variance distance is used in the decision loop - other
information from the H.264/AVC bitstream are ignored.

In order to overcome these issues, we propose two new
solutions: dynamic thresholding and content modeling using
linear discriminant functions. This transcoder also uses fea-
tures computed from information in the H.264/AVC bitstream
(such as the MV Variance Distance) to decide how to test
a given outgoing CU. However, the thresholds used in this
proposed transcoder are computed adaptively for the current
sequence being transcoded. Also, the features are only used
to decide the modes for the64× 64 and32× 32 CUs. As for
the 16× 16 and8× 8 CUs, the mode used in the H.264/AVC
bitstream is used in the decision process instead.

Other solutions involving mode mapping using machine
learning algorithms have been proposed [26], [27], [28],
[29]. However, all these solutions attempt to build a single,
generalized, mapping that can be used for transcoding any
bitstream. Also, most of these solutions use a large number
of features, and use a machine learning algorithm whose
training is complex, not being suitable for use in the proposed
transcoder.

Both the dynamic thresholding and the linear discriminant
functions are based on the same training stage. For a sequence
of n frames, the firstk frames are used for training, and
the transcoding operates in the followingn − k frames, as
shown in Fig. 1. When transcoding the training sub-sequence
(i.e., the firstk frames), all modes in the HEVC are tested,
and the H.264/AVC information is used only for training
purposes. Using the information gathered at this stage, the
transcoder computes the thresholds or the weights for the
linear discriminant functions, as explained in the following
sections.

k n-k

Total length: n frames

Training:

k frames

Transcoding:

n-k frames
Model

Generation

Fig. 1. Transcoding operation. When transcoding the firstk frames, all
possible modes in the HEVC are tested. This part is calledtraining phase.
Then, the transcoder builds the model (with information gathered in the
training phase). Finally, it starts thetranscodingphase, where the model is
used to select which partitions will be tested.

The advantage of using the training stage is that the
transcoding parameters can be adapted to the content of the
current sequence being transcoded. If the number of frames
used for training is kept small, the impact on the transcoding
complexity will be small as well, as the ration−k

n
will

be close to1. In addition, the transcoder efficiency can be
improved, since the parameters will be more related to the
content, compared to a transcoding solution where no training
is performed, or then training is performed using other video
sequences.

A. Common transcoding settings

The transcoding settings explained in this sections are
the same for all of the proposed transcoding options based
on dynamic thresholding and content modeling using linear
discriminant functions. Hence, these techniques, which are the
main novelty of this paper, can be better compared to each
other.

The MV Reuse and MV Refinement techniques are used in
all of the proposed transcoders. For any outgoing HEVC PU
size, all H.264/AVC motion vectors within the area defined by
the PU are considered for integer motion estimation, and no
further refinement is performed at the integer pixel level. The
search is then followed by the default HEVC sub-pixel search.

Also, for all of the proposed transcoders defined in this
section, the dynamic thresholding and the linear discriminant
functions are applied only to the lower HEVC coding depths0
and1 (i.e., for CUs of size64×64 or 32×32 - in this paper, we
are always assuming a largest CU size of64×64). For higher
depths (i.e., for CUs of size16×16 or smaller), a simple mode
mapping algorithm that uses only the H.264/AVC partitioning
is used. Note that the mode mapping for the higher depths is
only used if the algorithm chooses to split the larger CU.

Tests have shown that keeping the exact same partitions as
the incoming H.264/AVC leads to large rate-distortion losses,
and the complexity reduction is small. For this reason, a
different strategy has been designed. The rationale used isto
test HEVC partitions that are of the same size or larger than the
H.264/AVC partition. A simple look-up table is used to decide
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TABLE I
PUS TESTED FOR A16× 16 CU ACCORDING TO THEH.264/AVC

MACROBLOCK TYPE.

H.264/AVC Macroblock Type
PSKIP 16× 16 16× 8 8× 16 8× 8 INTRA

H
E

V
C

P
U

s
Te

st
ed

SKIP/MERGE X X X X X X
2N × 2N X X X X X
2N ×N X X X
N × 2N X X X
2N × nU X X X
2N × nD X X X
nR× 2N X X X
nL× 2N X X X
N ×N
INTRA X
SPLIT X X

TABLE II
PUS TESTED FOR A8× 8 CU ACCORDING TO THEH.264/AVC

SUB-MACROBLOCK TYPE.

H.264/AVC Sub Macroblock Type
BSKIP 8× 8 8× 4 4× 8 4× 4 INTRA

H
E

V
C

P
U

s
Te

st
ed

SKIP/MERGE X X X X X X
2N × 2N X X X X X
2N ×N X X X
N × 2N X X X
2N × nU X X X
2N × nD X X X
nR× 2N X X X
nL× 2N X X X
N ×N X X
INTRA X

which modes will be tested in the HEVC outgoing bitstream,
according to the H.264/AVC macroblock and sub-macroblock
types. The complete look-up tables for the16× 16 and8× 8
CUs are listed in Tables I and II, respectively.

B. Proposed Dynamic Thresholding

In this technique, a single feature from the incoming
H.264/AVC bitstream is considered, and the mapping is per-
formed using two thresholds,Tlow and Thigh. As such, the
training stage is used in order to compute these thresholds.
Here, four different incoming features are considered, oneat
a time: the MV variance distance, the MV phase variance,
the number of DCT coefficients and the energy of DCT
coefficients. The features are computed for each outgoing
HEVC CU, and they are only computed if all incoming
H.264/AVC macroblocks within that CU are encoded ininter
mode. Also, all incoming features produce positive values
equal to or higher than zero. The MV variance distance was
explained in Sec. III-B, and the other features are explained
next.

1) MV Phase Variance:Different from the MV variance
distance, which measures the variance of the magnitude of
the motion vectors, this feature is computed as the varianceof
the phases of all incoming motion vectors within a particular
block. When multiple reference frames are used, the idea to
use the phase, instead of the magnitude of the motion vectors,
is necessary to overcome the limitation of scaling the motion
vectors so that they point to the same reference frame. The
phase is computed as:

phase = atan2
(

mvkn→n−α.y,mvkn→n−α.x
)

(3)

Note that the phase lies in the closed interval[−π, π],
according to Fig. 2. Also, of particular interest, the phaseof
the (0, 0) motion vector is considered to be0. Clearly, before

computing the variance, the motion vectors are also propagated
to each4× 4 block.

x

y

0

2

2

-

-

Fig. 2. Computing the motion vector phase. Additionally to thephases shown
on the plot, the phase of the(0, 0) motion vector is considered to be0.

2) Number of DCT Coefficients:This simple incoming
feature is the number of non-zero DCT coefficients encoded
in the H.264/AVC bitstream for a particular block. The mag-
nitude of these coefficients is not used, just whether or not a
coefficient was transmitted. The idea of using the number of
DCT coefficients is that, if there is a small number of DCT
coefficients for a given block, it means that the prediction for
that block was good and the residual is small and, therefore,
a good prediction may be found using a larger block. On the
other hand, if there is a larger number of DCT coefficients for
a given block, then the prediction for that block is not good,
and the block may need to be sub-partitioned to find a good
prediction. Naturally, the information on the motion vectors
may help on this decision, but this will be considered later in
this paper.

3) Energy of DCT Coefficients:This feature is computed as
EC =

∑

i C
2

i , whereCi denotes the DCT coefficients within a
particular incoming block. Note that, since the minimum size
for which the feature is computed is for a32× 32 block, the
number of coefficients is the same whether the H.264/AVC
4 × 4 or 8 × 8 transform was used within the block. The
idea of using the energy of DCT coefficients is the same as
the number of DCT coefficients, but the energy gives a more
complete information about the magnitude of the residual than
just the number of coefficients.

Computing the thresholds

In order to adapt the thresholds to the content of the current
sequence being transcoded, during the training stage, the trans-
coder computes the relevant incoming feature for each block
using the H.264/AVC information, and stores these features
in an arrayFd =

[

fd
0
, fd

1
, ... , fd

N−1

]

, with elementsfd
i ,

whered refers to the depth of the outgoing CU andi refers
to the feature computed for a particular CUi, andN refers
to the number of CUs. For the training frames, the computed
features are not used to decide which partitions will be tested,
instead, all HEVC modes are tested for these frames. After the
decision for a given CU has been made, the transcoder stores
the mode chosen in an arrayCd =

[

cd
0
, cd

1
, ... , cdN−1

]

,
wherecdi refers to the class of thei-th CU. In order to simplify
the large number of modes in the HEVC codec, the transcoder
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Fig. 3. Mode distribution and threshold computation for different features: (a) MV Variance Distance; (b) MV Phase Variance; (c) Number of DCT
Coefficients; and (d) Energy of DCT Coefficients. The sequence being encoded is Basketball Drill, the data refers to the first 25 frames and the CU is64×64
pixels.

stores the chosen mode information in three classes: (i) if the
CU was split; (ii) if the CU was encoded as SKIP or with a
2N×2N PU; and (iii) if the CU was encoded using any other
mode.

After the training stage is done, the transcoder uses the two
arrays,Fd andCd, to compute the thresholdsT d

low andT d
high

(whered corresponds to the depth of the outgoing HEVC CU)
using a percentile criterion. For each depth, the thresholds are
computed as:

• T d
low is chosen as the highest value for which90% of

the HEVC partitions withfd
i ≤ T d

low are encoded using
either the SKIP or2N × 2N mode.

• T d
high is chosen as the lowest value for which90% of the

HEVC partitions withfd
i > T d

high are encoded using a
higher depth (i.e., encoded in split mode).

Note that the90% percentile is derived heuristically. This
could be though as the transcoder complexity control. Fig. 3
illustrates the computation of the thresholds using the four
features. In the figure, it can be seen that, for all features,the
higher the value of the feature, the more likely it is that that
CU is split in the HEVC. On the other hand, the lower the
value of the feature, the more likely it is that the CU is encoded
with a PU size of2N × 2N . Regardless of the feature value,
a small amount of CUs are encoded using the other modes
(class (iii)).

Once the transcoding of the training sub-sequence is fin-
ished, the thresholds are computed. For the rest of the frames,
the transcoder uses the computed thresholds to decide which

HEVC partitions will be tested. For this transcoder, according
to the incoming feature valuefd

i for the corresponding outgo-
ing CU, the transcoder will apply the following rules, which
are shown in Fig. 4.

• If fd
i ≤ T d

low (R0, in the figure), then only the SKIP and
the 2N × 2N modes are tested, and the CU isnot split.

• If fd
i > T d

high (R2, in the figure), then only the SKIP
mode is tested for this depth, and the CU is split.

• Otherwise (i.e., ifT d
low < fd

i ≤ T d
high, shown as region

R1, in the figure), then all modes are tested for this depth,
and the CU is split.

FeatureThigh
d

0

R0

Tlow
d

R1 R2

Fig. 4. Threshold-based feature classification.

According to the incoming feature value, the transcoder tests
the outgoing PUs according to these rules. If the rules state
the CU should not be split, it chooses the best mode, among
those tested, and proceeds to the next CU. Otherwise, if the
CU is split, the algorithm is repeated for the four children CUs,
unless the child CU is of size16×16, in which case a simple
mode mapping from the incoming H.264/AVC bitstream is
used.
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C. Content-Modeling Using Linear Discriminant Functions

Automatically classified

as SPLIT

MV Variance DistanceThigh
d

0

Further classified with

LDFs

Fig. 5. Example of classification. All CUs with a MV Variance Distance
higher than the thresholdT d

high
are automatically classified as split. For the

remaining CUs, linear discriminant functions (LDFs) are usedto classify it
between split or not split.

Start

Decision for a given CU

Is

> Td
high ?

Which

Class

is it?

Repeat the procedure

for each sub-CU (until

depth 1)

Yes

No

Compute the MV Variance

Distance using the

H.264 MVs for this CU

Compute the cost for

the 2Nx2N SKIP mode

Apply the classification

using linear

discriminant functions

Split the CU into four

sub-CUs

Split

Test all PU modes at this

depth, and decide the

best mode for this CU

Not

Split

Finish the decision

for this CU

Select the CU/PU partitioning with

the minimum cost, among those

tested

Fig. 6. Flowchart of CU mode decision using the linear discriminant function
approach.

In the previous sections the proposed transcoder uses only
one feature at a time. However, an alternative approach would
involve the use of many features in an attempt to better predict
the outgoing HEVC partitioning. There are several methods
in the literature that could be used to classify a given set
of features [36], [37], [38]. Here, a simple method is used,
called Linear Discriminant Functions [39]. The main reason
this method was chosen is that both the training and the
classification themselves are very low complexity operations.
Basically, a linear mapping is computed between the incoming

features and the outgoing CU classes. The linear mapping is
based on the well-known least-squares method using a non-
iterative solution [39]. Thus, this method can be used inside the
transcoder loop without hindering the transcoder complexity.

During the training stage, the transcoder computes all fea-
tures for each block, storing it in an arrayFsd (whered refers
to the depth of the CU). Also, for the training sub-sequence,
all the outgoing HEVC modes are tested, and the decision for
each CU is stored in an arrayCsd. The first modification,
compared to the dynamic thresholding solution, is that the
transcoder stores the chosen mode information in only two
classes: (i) if the CU was split; and (ii) if the CU was not
split. Therefore, the transcoder is attempting to classifyonly
whether the CU was split or not.

It was noted that one of the incoming features, the MV
variance distance, has a very high correlation with one of the
two aforementioned classes. A block with a high value for the
MV variance distance is most likely to be split. For this reason,
the incoming blocks with a MV variance distanceυ higher
than a threshold (T d

high, computed as the90-th percentile,
as explained in Sec. IV-B) are removed from the set on the
assumption that they shall be split. For the rest of the incoming
blocks (i.e., for whichυ ≤ T d

high), the classification is applied
using the linear discriminant function solution. This procedure
is illustrated in Fig. 5.

In order to use the linear discriminant functions, seven
incoming features are considered for the64× 64 and32× 32
CU sizes:

1) The total number of H.264/AVC partitions in the incom-
ing CU. This is the number of different inter-prediction
blocks in the H.264/AVC for the region defined by the
current CU.

2) The MV variance distance, as introduced in Sec. III-B.
3) The variance of thex component for the motion vectors

within the CU.
4) The variance of they component for the motion vectors

within the CU.
5) The MV phase variance, as introduced in Sec IV-B.
6) The number of DCT coefficients, as introduced in Sec.

IV-B.
7) The average energy of the DCT coefficients. This is

energy of the DCT coefficients (as introduced in Sec.
IV-B) divided by the number of DCT coefficients. If
there are no non-zero DCT coefficients within the CU,
then it is considered as zero.

After it finishes transcoding the training sub-sequence, and
after the CUs with MV variance distanceυ > T d

high are
removed from the set, the remaining elements in the set are
used to compute the optimal weights for the linear discriminant
functions. Denote the sequence of feature vectors in this set
that belongs to classi by Xi = [xi,1 xi,2 ... xi,Ni

]
T , where

Xi is aNi×M matrix,M is the dimensionality of the feature
vector andNi is the total number of feature vectors in classi.
Concatenating theXi matrices for both classes (i.e., split and
not split) results inX = [X0 X1]

T , whereX0 represents
the feature vectors for class0 (split) andX1 represents the
feature vectors for class1 (not split). At the same time, letyi

be the ideal output vector for classi, which is a column vector
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comprised of zeros and ones, such as:y0 = [1N0
, 0N1

]
T and

y1 = [0N0
, 1N1

]
T . Again, y = [y0 y1]

T .
The training procedure consists of computing the optimum

weight vectorwopt
i that minimises the distance betweenyi

and a linear combination of the training feature vectorsXwi

such that

w
opt
i = arg

wi

min ‖Xwi − yi‖p (4)

Eq. 4 indicates that the optimal weight vectorw
opt
i could

be obtained by minimising theLp-norm of the error vector
ei = Xwi − yi. Minimising this function using theL2-norm
leads to:

w
opt
i =

(

XTX
)−1

XTyi (5)

which can be simply solved. Once the optimal weights are
computed, using the classifier is a simple operation. LetXC

be the feature vector that needs to be classified as one of the
two classes. This can be done by evaluating the output of this
feature vector against all2 models, computing a set ofscores
si, such as:

si = XCw
opt
i (6)

Then, the class of the sequenceXC is determined by
choosing the class with the highest score:

c = arg
i

max (si) (7)

Then, the following algorithm is applied to decide which
partitions are tested for each CU. When deciding which modes
will be tested for a given CU, the transcoder first computes
the MV variance distanceυ. If υ > T d

high, then this partition
is split into four sub-CUs and the algorithm repeats itself for
the CUs at the next depth (only the SKIP mode is tested at
the current depth, before splitting). Otherwise, the transcoder
computes the remaining features and applies the classification
again for the four sub-CUs. If the outcome is split (i.e., if
the score for the split class is higher than the score for the
not split class), then this partition is split and the algorithm
repeats itself for the CUs at the next depth (again, only the
SKIP mode is tested at this depth). Otherwise, if the outcome
is not to split, then all modes at this depth are tested and the
partition is not split. Finally, the transcoder decides for the
best mode among those tested, and proceeds to the next CU.
This algorithm is shown in Fig. 6.

This algorithm is applied for the64× 64 and32× 32 CUs.
For the16 × 16 and8 × 8 CUs, the H.264/AVC macroblock
and sub-macroblock types are used, as explained in Sec. IV-A.
Also, if there is an intra block within the CU, then the
algorithm is not used and all partitions are tested for that CU,
and the CU is split.

V. EXPERIMENTAL RESULTS

In this section, we present two sets of experiments in order
to evaluate the proposed methods. The first set is designed to
evaluate the training stage of the proposed approach, whilethe
second set evaluates the proposed transcoder in more practical
scenarios.

A. Evaluating the proposed approach

In the following experiments, first the original sequence is
encoded using H.264/AVC at High Profile, and using anIPP
configuration with1 reference frame. The reference software
JM 14.2 [40] is used.

Afterwards, the H.264/AVC bitstream is transcoded to
HEVC using one of the transcoding options. For HEVC, the
reference software for theHM4.0rc1 encoder is used with the
default settings [21], with a64 × 64 largest CU (LCU) size
and LCUs are encoded in raster scan order, using the same
reference frame structure as the H.264/AVC (called the low-
delay reference frame structure in HEVC, with one reference
frame). For all transcoding options, fast motion estimation and
fast mode decision are used for HEVC , as defined in the
HM4.0rc1 reference software.

The QPs used to encode the H.264/AVC bitstream are
{37, 32, 27, 22}, and the same QPs are used for HEVC. Four
sequences are used to evaluate the proposed transcoders:
Basketball Drill832× 480 50 Hz, BQMall 832× 480 60 Hz,
Party Scene832 × 480 50 Hz and Race Horses832 × 480
30 Hz. All of these sequences are part of the HEVC testing
dataset.

Five options of the proposed transcoder are evaluated (i.e.,
four of the dynamic thresholding solution and one using the
linear discriminant functions solution). Three other options are
used as benchmarks. The full list of tested transcoders, as
referred to in this section, are as follows:

1) RT-FME: this corresponds to the trivial transcoder,
decoding the entire sequence and re-encoding using
the HEVC standard fast motion estimation and mode
decision algorithms. This option is used as anchor both
for BD-rate calculation and speed-up results.

2) RT-MVR: the transcoder based on MV Reuse: this
corresponds to the transcoder shown in Sec. III-B [3].

3) RT-MVVD: The transcoder based on the MV Variance
Distance as seen in Sec. III-B, with parametersTlow =
1, Thigh = 100 [3].

4) PTDT-MVVD: The dynamic thresholding transcoder
(Sec. IV-B) using MV Variance Distance.

5) PTDT-MVPV: The dynamic thresholding transcoder
(Sec. IV-B) using MV Phase Variance.

6) PTDT-NDCT: The dynamic thresholding transcoder
(Sec. IV-B) using the number of DCT coefficients.

7) PTDT-EDCT: The dynamic thresholding transcoder
(Sec. IV-B) using the energy of DCT coefficients.

8) PTCM-LDF: The content modeling transcoder (Sec.
IV-C) using Linear Discriminant Functions.

The experiments are designed to provide answers to the
following questions: (i) how many frames are needed during
the training process to build an efficient model; and (ii) for
how long will the training model remain valid (i.e., for how
many frames can the model be successfully applied). Thus,
three different training lengths were tested:10, 25 and 50
frames, and, in order to investigate the impact of using the
same parameters for a longer period, three different lengths of
the sequences were used:2.5, 5 and10 seconds. The complete
results are shown in Tables III, IV and V, both in terms of
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TABLE III
TRANSCODER RESULTS USING10 FRAMES FOR TRAINING, USING RT-FME AS ANCHOR. BD-RATE FIGURES ARE SHOWN IN PERCENTAGE.

Basketball Drill BQ Mall PartyScene RaceHorses
Transcoder BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up

Le
ng

th
=
2
.5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.29 1.09 2.27 1.08 1.39 1.10 1.94 1.10
RT-MVVD 5.34 2.15 7.80 1.95 15.1 2.19 3.99 1.65
PTDT-MVVD 3.61 1.77 4.36 1.85 2.69 1.79 2.77 1.50
PTDT-MVPV 7.11 1.73 6.61 1.72 3.21 1.72 2.79 1.45
PTDT-NDCT 5.13 1.89 6.85 2.03 2.92 1.88 4.08 1.67
PTDT-EDCT 5.57 2.11 7.91 2.28 3.19 2.08 4.54 1.76
PTCM-LDF 4.93 2.00 5.98 2.12 3.23 1.99 5.42 1.71

Le
ng

th
=
5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.24 1.09 2.15 1.07 1.35 1.10 1.95 1.10
RT-MVVD 5.80 2.14 7.10 2.01 14.2 2.16 3.70 1.76
PTDT-MVVD 4.04 1.82 4.00 1.94 2.97 1.86 2.79 1.58
PTDT-MVPV 7.78 1.78 5.88 1.79 3.53 1.79 2.80 1.52
PTDT-NDCT 5.31 1.97 6.55 2.18 3.36 1.96 3.84 1.79
PTDT-EDCT 5.77 2.20 7.69 2.48 3.63 2.18 4.31 1.89
PTCM-LDF 5.43 2.08 5.58 2.26 3.59 2.09 4.94 1.76

Le
ng

th
=
1
0

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.36 1.09 1.89 1.07 1.09 1.10 2.05 1.10
RT-MVVD 6.15 2.13 7.17 1.96 16.2 2.33 4.37 1.69
PTDT-MVVD 4.43 1.86 3.92 1.96 2.68 2.00 3.35 1.63
PTDT-MVPV 8.26 1.81 5.33 1.80 4.15 1.96 3.34 1.56
PTDT-NDCT 5.66 2.00 6.42 2.22 3.32 2.14 4.71 1.83
PTDT-EDCT 6.09 2.25 7.58 2.58 3.58 2.40 5.33 1.94
PTCM-LDF 5.84 2.12 5.93 2.34 3.34 2.27 6.59 1.87

TABLE IV
TRANSCODER RESULTS USING25 FRAMES FOR TRAINING, USING RT-FME AS ANCHOR. BD-RATE FIGURES ARE SHOWN IN PERCENTAGE.

Basketball Drill BQ Mall PartyScene RaceHorses
Transcoder BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up

Le
ng

th
=
2
.5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.29 1.09 2.27 1.09 1.39 1.09 1.94 1.08
RT-MVVD 5.34 2.16 7.80 1.96 15.1 2.19 3.99 1.66
PTDT-MVVD 2.96 1.57 4.02 1.63 2.09 1.55 2.05 1.31
PTDT-MVPV 3.38 1.52 4.48 1.55 2.14 1.52 2.04 1.29
PTDT-NDCT 4.42 1.67 6.35 1.82 2.36 1.64 2.95 1.42
PTDT-EDCT 4.68 1.79 7.00 1.98 2.63 1.78 3.36 1.47
PTCM-LDF 4.42 1.74 5.63 1.87 3.07 1.72 4.71 1.44

Le
ng

th
=
5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.24 1.09 2.15 1.07 1.35 1.11 1.95 1.10
RT-MVVD 5.80 2.18 7.10 2.05 14.2 2.21 3.70 1.79
PTDT-MVVD 3.64 1.72 3.82 1.79 2.55 1.73 2.45 1.48
PTDT-MVPV 4.17 1.65 4.12 1.69 2.65 1.68 2.42 1.44
PTDT-NDCT 5.06 1.84 6.28 2.08 2.96 1.84 3.29 1.64
PTDT-EDCT 5.28 2.01 7.09 2.31 3.29 2.04 3.78 1.73
PTCM-LDF 5.14 1.95 5.69 2.13 3.62 1.96 5.00 1.68

Le
ng

th
=
1
0

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.36 1.09 1.89 1.07 1.09 1.10 2.05 1.10
RT-MVVD 6.15 2.18 7.17 2.01 16.2 2.38 4.37 1.72
PTDT-MVVD 4.05 1.80 3.73 1.84 2.35 1.87 3.19 1.56
PTDT-MVPV 4.52 1.72 4.09 1.75 2.75 1.84 3.08 1.50
PTDT-NDCT 5.54 1.94 6.33 2.19 2.96 2.04 4.40 1.74
PTDT-EDCT 5.77 2.13 7.26 2.48 3.39 2.31 5.04 1.85
PTCM-LDF 5.65 2.18 6.41 2.27 3.45 2.19 7.78 1.78

BD-rate [41] and transcoding speed-up. For all cases, RT-FME
is used as anchor for both BD-bitrate and speed-up figures.

Note that the speed-up figures for RT-MVR and RT-MVVD
for this experiment are lower than those shown in the original
paper [3]. The reason is that in this experiment only one
reference frame was used, instead of four.

It can be seen that reference transcoder based on the MV
Reuse (RT-MVR) shows a loss of up to2.29% in terms of
BD-rate (for Basketball Drill sequence encoding2.5 seconds,
shown in Tables III, IV and V), and1.9% on average, but
the speed-up is only of1.09, on average. These speed-up
figures implies that relying on the MV reuse alone is not
sufficient for an efficient transcoder, as the gains in terms of
complexity are rather low. On the other hand, the good RD
performance implies that the H.264/AVC motion vectors are

highly correlated to the HEVC motion vectors. The RT-MVVD
shows good speed-up figures (up to2.38, for PartyScene
sequence encoding10 seconds of the sequence, shown in Table
IV, and 2.04 on average), but the RD loss is significantly
higher, especially for the PartyScene sequence (up to16.2%,
shown in Table IV) and BQMall (up to7.80%, shown in Table
V) sequences.

Using the dynamic thresholding approach, the RD perfor-
mance loss is significantly lower, regardless of the features
used. In the worst case, the BD-rate loss is8.26%, when
using the MV phase variance as feature (PTDT-MVPV) (for
Basketball Drill sequence, using10 frames for training and
transcoding10 s, seen in Table III). Among the features, the
MV variance distance (PTDT-MVVD) presented the lowest
BD-rate loss for the majority of the cases, with a BD-rate loss
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TABLE V
TRANSCODER RESULTS USING50 FRAMES FOR TRAINING, USING RT-FME AS ANCHOR. BD-RATE FIGURES ARE SHOWN IN PERCENTAGE.

Basketball Drill BQ Mall PartyScene RaceHorses
Transcoder BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up BD-rate Speed-up

Le
ng

th
=
2
.5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.29 1.09 2.27 1.09 1.39 1.10 1.94 1.10
RT-MVVD 5.34 2.15 7.80 1.96 15.1 2.19 3.99 1.66
PTDT-MVVD 2.24 1.40 2.93 1.45 1.47 1.36 1.09 1.14
PTDT-MVPV 2.36 1.36 3.10 1.40 1.43 1.33 1.03 1.13
PTDT-NDCT 3.14 1.45 4.41 1.51 1.66 1.41 1.42 1.17
PTDT-EDCT 3.40 1.52 5.31 1.68 1.80 1.46 1.61 1.19
PTCM-LDF 3.24 1.49 5.01 1.61 2.52 1.47 2.59 1.19

Le
ng

th
=
5

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.24 1.09 2.15 1.07 1.35 1.11 1.95 1.10
RT-MVVD 5.80 2.13 7.10 2.01 14.2 2.17 3.70 1.76
PTDT-MVVD 3.24 1.60 3.12 1.65 2.18 1.56 1.97 1.35
PTDT-MVPV 3.52 1.54 3.18 1.58 2.19 1.66 1.91 1.32
PTDT-NDCT 4.44 1.69 4.90 1.79 2.59 1.74 2.46 1.44
PTDT-EDCT 4.70 1.79 6.09 2.05 2.78 1.77 2.91 1.50
PTCM-LDF 4.63 1.76 5.89 2.01 3.62 2.17 4.16 1.48

Le
ng

th
=
1
0

s

RT-FME 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
RT-MVR 2.36 1.09 1.89 1.07 1.09 1.10 2.05 1.10
RT-MVVD 6.15 2.13 7.17 1.97 16.1 2.33 4.37 1.48
PTDT-MVVD 3.90 1.72 1.89 1.76 2.04 1.75 2.86 1.43
PTDT-MVPV 4.25 1.65 3.35 1.67 2.11 1.68 2.80 1.61
PTDT-NDCT 5.16 1.85 5.40 1.95 2.68 1.90 3.81 1.70
PTDT-EDCT 5.45 1.99 6.75 2.32 3.00 2.03 4.45 1.66
PTCM-LDF 5.51 1.94 7.35 2.14 3.69 2.06 7.59 1.68

ranging from1.09% (for RaceHorses sequence, with50 frames
for training and encoding2.5 s, seen in Table V) to4.43%
(for Basketball Drill sequence, with10 frames for training
and encoding10 s, seen in Table III). For most of the tests,
the MV phase variance (PTDT-MVPV) also presents a very
low loss, close to PTDT-MVVD, with the notable exception
of Basketball Drill and BQMall sequences using10 frames
for training (seen in Table III), where the loss is among the
highest. However, the speed-up figures for both PTDT-MVVD
and PTDT-MVPV are the lowest for the dynamic thresholding
approach. The fastest option for the majority of the cases is
using the energy of the DCT coefficients (PTDT-EDCT), at the
expense of a worse RD loss. Using the Linear Discriminant
Functions (PTCM-LDF), the speed-up figures are closer to
PTDT-EDCT, while the rate distortion performance loss is
lower.

Analysing the tables, it can be seen that, as expected, the
higher the number of frames used for training and the shorter
the sequence being transcoded, the better the rate distortion
performance (although there are a few exceptions, notably
when using the Linear Discriminant Functions (PTCM-LDF)
encoding5 and 10 seconds). However, apart from the MV
Phase Variance feature (PTDT-MVPV), this gain in perfor-
mance is rather low. Using25 frames for training results in
−0.9%, −0.57% and −0.40% average BD-rate gains when
encoding2.5, 5 and 10 seconds, respectively, compared to
using only 10 frames for training, on average among all
features and sequences. Using50 frames for training results on
−1.15%, −0.59% and−0.38% average BD-rate gains when
encoding2.5, 5 and 10 seconds, respectively, compared to
using 25 frames for training. This happens for two reasons:
generally, a longer training yields a better model, and thusthe
loss in the transcoding phase is lower; and because the best
rate-distortion performance is obtained in the training part,
when full encoding is being performed. Note that the largest
difference occurs when the ratio of the number of frames

TABLE VI
AVERAGE RESULTS FORPTCM-LDF, USING RT-FME AS ANCHOR.

BD-Rate [%] Speed-up
Number of Frames used for Training

10 25 50 10 25 50

Le
ng

th 2.5s 4.89 4.45 3.34 1.95 1.69 1.44
5s 4.88 4.86 4.57 2.04 1.93 1.85
10s 5.42 5.82 6.03 2.15 2.10 1.95

used for training compared to the length of the sequence
being encoded is the highest (50 frames used for training and
encoding only2.5 seconds).

On the other hand, it can also be seen that the speed-
up gain when encoding a larger sequence is rather small.
Encoding5 seconds results in a speed-up gain of1.05, 1.13
and 1.20, when using10, 25 and 50 frames for training,
respectively, on average among all features and sequences,
compared to encoding only2.5 seconds. Encoding10 seconds
results in a speed-up gain of1.04, 1.07 and1.09, when using
10, 25 and 50 frames for training, respectively, on average
among all features and sequences, compared to encoding5
seconds. Notice that the largest difference occurs when using
50 frames for training and encoding shorter sequences (2.5
and5 seconds), and even in this case the gain is only20%.

Table VI compares the number of frames used for training
and the length of the sequence being encoded for the specific
case of the Linear Discriminant Functions (PTCM-LDF). Al-
though there are a few outliers, the behaviour discussed in the
previous paragraphs can be observed: the longer the training
sequence and the shorter the sequence, the better the rate
distortion performance (the lowest average loss,3.34%, occurs
for training with 50 frames and encoding2.5 seconds of the
sequence). At the same time, the shorter the training sequence
and the longer the sequence, the fastest the transcoder (the
fastest option, at2.15, occurs for training with10 sequences
and encoding10 seconds). However, for both cases, this
difference is rather small.
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Among the incoming H.264/AVC features that have been
tested, the best compromise between complexity and rate-
distortion performance is obtained when a combination of
all features, combined by a linear classifier (in this case,
using linear discriminant functions, PTCM-LDF), is used.
The experiments were carried out to find out the number
of frames needed for training and also if the model built is
robust enough to be used for a long period. From the results
of these experiments, it was observed that the gain in rate-
distortion performance of using more frames to generate the
model is rather low. At the same time, while the rate-distortion
performance losses of applying this model for a long period
are small, the gain in complexity is also rather low. This
leads to the conclusion that a better transcoding option would
involve using less frames for training and encoding a shorter
sequence, repeating the training more often, in order to keep
track of the properties of the sequence being transcoded. This
way, the speed-up could be kept at roughly2 (for a low-
delay configuration using only one reference frame - larger
speed-up figures are expected if more reference frames are
used), while the benefits of a small rate-distortion loss would
be retained. In addition, the transcoder would be robust if
the sequence properties are changed. The exact parameters
could be changed according to the application, or it could be
done adaptively, using algorithms to detect scene changes [42],
[43] to decide when to build a new model, or developing an
algorithm specifically to decide when a new model should be
built.

B. Experiments in more practical scenarios

In this set of experiments, the proposed LDF method is
evaluated in a more practical scenario. Again, the originalse-
quence is encoded using H.264/AVC at High Profile, however,
three reference frame structures are used: (i) anIPP structure
with 1 reference frame, denoted asIPP1; (ii) an IPP structure
with 4 reference frames, denoted asIPP4; and (iii) an IBBP
structure with1 reference frame forP frames and1 reference
frame in each direction forB-frames, denoted asIBBP . The
reference software JM 14.2 [40] is used.

Afterwards, the H.264/AVC bitstream is transcoded to
HEVC using three transcoding options: (i) the trivial transco-
der, RT-EZPS; (ii) the transcoder based on the MV Variance
Distance as seen in Sec. III-B, with parametersTlow = 1,
Thigh = 100 [3], RT-MVVD; and (iii) the proposed method
with the linear discriminant functions, using the first10 frames
for training, PT-LDF. For these experiments, the reference
software for theHM9.1rc1 encoder is used with the default
settings [22].

The QPs used to encode the H.264/AVC bitstream are
{37, 32, 27, 22}, and the same QPs are used for HEVC.
Two sequences are used: Kimono11920 × 1080 24 Hz and
ParkScene1920×1080 24 Hz. Both sequences are part of the
HEVC testing dataset. The results are presented in Table VII
and Fig. 7.

The first thing that can be seen from these results is that
RT-MVVD does perform really well in some cases, such as for
Kimono1 usingIBBP structure, where it offers a loss of only

TABLE VII
TRANSCODER RESULTS IN PRACTICAL SCENARIOS.

BD-Rate [%]
Sequence Method Speed-up Average Low High

I
B
B
P

Kimono1
RT-FME 1.00 0.00 0.00 0.00

RT-MVVD 1.94 1.57 1.14 1.97
PT-LDF 2.53 2.95 2.40 3.30

ParkScene
RT-FME 1.00 0.00 0.00 0.00

RT-MVVD 2.27 4.31 2.67 5.60
PT-LDF 2.91 4.22 3.14 4.49

I
P
P
4 Kimono1

RT-FME 1.00 0.00 0.00 0.00
RT-MVVD 2.16 2.96 1.95 4.09

PT-LDF 2.69 3.75 3.25 3.92

ParkScene
RT-FME 1.00 0.00 0.00 0.00

RT-MVVD 2.91 9.83 5.07 14.4
PT-LDF 3.06 4.42 4.83 3.74

I
P
P
1 Kimono1

RT-FME 1.00 0.00 0.00 0.00
RT-MVVD 2.04 2.79 2.02 3.55

PT-LDF 2.43 3.59 3.36 3.43

ParkScene
RT-FME 1.00 0.00 0.00 0.00

RT-MVVD 2.75 8.09 4.42 11.5
PT-LDF 2.72 4.26 5.02 3.49

1.57% with a speed-up factor of1.94. However, the range of
the RD loss quite large (between1.57% and9.83% of average
bitrate, being as high as14.4% when only high bitrates are
considered, as seen in Table VII). This is expected, since this
method uses fixed thresholds that may not be suitable for every
sequence.

On the other hand, the proposed method, PT-LDF, is much
more reliable, with RD loss in the range2.95% to 4.42%.
Also, even performing the training for the first10 frames, it
is also faster than RT-MVVD for all cases tested except one
(ParkScene withIPP1 structure, where both methods yield
the same speed-up factor. In addition, the PT-LDF offers the
same level of performance for both low and high bitrates.

Finally, the results show that the method performs well for
all reference frame structures tested, and that it can be scaled
for HD content.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, transcoding solutions based on dynamic
thresholding and content modeling are proposed, in which
parts of the sequence are used for training. During the training
stage, full re-encoding is applied, and the transcoder then
uses this information, along with the information from the
H.264/AVC bitstream, to generate a content-specific model to
map the H.264/AVC partitions into HEVC CUs. Afterwards,
the transcoder applies this model to decide which partitions are
tested for the rest of the sequence. Experiments have shown
that the performance of this transcoder is better than similar
transcoding options based on fixed thresholds, yielding a lower
rate-distortion loss at a competitive complexity performance.
In particular, tests have shown that the proposed approach
using linear discriminant functions yields good results even in
difficult enviroments, such as using multiple reference frames
or B-frames.

Among the transcoding options proposed, the dynamic
thresholding using the MV variance distance as the metric
resulted in the lowest RD loss, while the dynamic thresholding
using the energy of the DCT coefficients as metric was
the fastest, for most of the cases. Using linear discriminant
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Fig. 7. RD Results for Kimono1 sequence using: (a)IBBP ; (b) IPP4 and (c)IPP1 reference frame structures, and for ParkScene sequence using: (d)
IBBP ; (e) IPP4 and (f) IPP1 reference frame structures.

functions to combine several features presented the best com-
promise, with a speed-up close to the dynamic thresholding
using the energy of the DCT coefficients but at a lower RD
loss, compared to the trivial transcoder.

The work presented in this paper also opens up several inter-
esting directions for future work. For instance, other machine
learning techniques could be used, instead of the simple linear
discriminant functions, and different set of features could be
explored to improve the transcoder performance. Also, new
options to decide when to re-build the transcoding model (i.e.,
when to perform the training stage again) could be explored,
either based on scene change detection algorithms or a kind
of “internal control” to detect when the model is no longer
optimal and trigger a new training.
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