7,148 research outputs found

    On the Consistency of a Fermion-Torsion Effective Theory

    Full text link
    We discuss the possibility to construct an effective quantum field theory for an axial vector coupled to a Dirac spinor field. A massive axial vector describes antisymmetric torsion. The consistency conditions include unitarity and renormalizability in the low-energy region. The investigation of the Ward identities and the one- and two-loop divergences indicate serious problems arising in the theory. The final conclusion is that torsion may exist as a string excitation, but there are very severe restrictions for the existence of a propagating torsion field, subject to the quantization procedure, at low energies.Comment: LaTeX, 26 pages, 4 figure

    On the cosmological effects of the Weyssenhoff spinning fluid in the Einstein-Cartan framework

    Full text link
    The effects of non-Riemannian structures in Cosmology have been studied long ago and are still a relevant subject of investigation. In the seventies, it was discovered that singularity avoidance and early accelerated expansion can be induced by torsion in the Einstein-Cartan theory. In this framework, torsion is not dynamical and is completely expressed by means of the spin sources. Thus, in order to study the effects of torsion in the Einstein-Cartan theory, one has to introduce matter with spin. In principle, this can be done in several ways. In this work we consider the cosmological evolution of the universe in the presence of a constant isotropic and homogeneous axial current and the Weyssenhoff spinning fluid. We analyse possible solutions of this model, with and without the spinning fluid.Comment: Work presented at the 7th Alexander Friedmann International Seminar on Gravitation and Cosmology, Joao Pessoa, Brazil, 29 Jun - 5 Jul 2008. No figures, 5 pages. New version with dynamical equation corrected, new reference and a brief comparison with its experimental bound

    Eisenstein Series and String Thresholds

    Get PDF
    We investigate the relevance of Eisenstein series for representing certain G(Z)G(Z)-invariant string theory amplitudes which receive corrections from BPS states only. G(Z)G(Z) may stand for any of the mapping class, T-duality and U-duality groups Sl(d,Z)Sl(d,Z), SO(d,d,Z)SO(d,d,Z) or Ed+1(d+1)(Z)E_{d+1(d+1)}(Z) respectively. Using G(Z)G(Z)-invariant mass formulae, we construct invariant modular functions on the symmetric space K\G(R)K\backslash G(R) of non-compact type, with KK the maximal compact subgroup of G(R)G(R), that generalize the standard non-holomorphic Eisenstein series arising in harmonic analysis on the fundamental domain of the Poincar\'e upper half-plane. Comparing the asymptotics and eigenvalues of the Eisenstein series under second order differential operators with quantities arising in one- and gg-loop string amplitudes, we obtain a manifestly T-duality invariant representation of the latter, conjecture their non-perturbative U-duality invariant extension, and analyze the resulting non-perturbative effects. This includes the R4R^4 and R4H4g4R^4 H^{4g-4} couplings in toroidal compactifications of M-theory to any dimension D4D\geq 4 and D6D\geq 6 respectively.Comment: Latex2e, 60 pages; v2: Appendix A.4 extended, 2 refs added, thms renumbered, plus minor corrections; v3: relation (1.7) to math Eis series clarified, eq (3.3) and minor typos corrected, final version to appear in Comm. Math. Phys; v4: misprints and Eq C.13,C.24 corrected, see note adde

    Quantum erasure in the presence of a thermal bath: the effects of system-environment microscopic correlations

    Full text link
    We investigate the role of the environment in a quantum erasure setup in the cavity quantum electrodynamics domain. Two slightly different schemes are analyzed. We show that the effects of the environment vary when a scheme is exchanged for another. This can be used to estimate the macroscopic parameters related to the system-environment microscopic correlations.Comment: 10 pages, 2 figure

    Sustainability Assessment of indicators for integrated water resources management

    Get PDF
    The scientific community strongly recommends the adoption of indicators for the evaluation and monitoring of progress towards sustainable development. Furthermore, international organizations consider that indicators are powerful decision-making tools. Nevertheless, the quality and reliability of the indicators depends on the application of adequate and appropriate criteria to assess them. The general objective of this study was to evaluate how indicators related to water use and management perform against a set of sustainability criteria. Our research identified 170 indicators related to water use and management. These indicators were assessed by an international panel of experts that evaluated whether they fulfil the four sustainability criteria: social, economic, environmental, and institutional. We employed an evaluation matrix that classified all indicators according to the DPSIR (Driving Forces, Pressures, States, Impacts and Responses) framework. A pilot study served to test and approve the research methodology before carrying out the full implementation. The findings of the study show that 24 indicators comply with the majority of the sustainability criteria; 59 indicators are bi-dimensional (meaning that they comply with two sustainability criteria); 86 are one-dimensional indicators (fulfilling just one of the four sustainability criteria) and one indicator do not fulfil any of the sustainability criteria.Postprint (author's final draft

    Disease Localization in Multilayer Networks

    Get PDF
    We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the SIS and SIR dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasi-stationary state method we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: if the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we verified the barrier effect, i.e., for three-layer configuration, when the layer with the largest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems opening new possibilities for the study of spreading processes.Comment: Revised version. 25 pages and 18 figure

    Control of state and state entanglement with a single auxiliary subsystem

    Full text link
    We present a strategy to control the evolution of a quantum system. The novel aspect of this protocol is the use of a \emph{single auxiliary subsystem}. Two applications are given, one which allows for state preservation and another which controls the degree of entanglement of a given initial state
    corecore