20 research outputs found

    Relativistic GWGW+BSE study of the optical properties of Ruddlesden-Popper iridates

    Full text link
    We study the optical properties of the Ruddlesden-Popper series of iridates Srn+1_{n+1}Irn_nO3n+1_{3n+1} (nn=1, 2 and \infty) by solving the Bethe-Salpeter equation (BSE), where the quasiparticle (QP) energies and screened interactions WW are obtained by the GWGW approximation including spin-orbit coupling. The computed optical conductivity spectra show strong excitonic effects and reproduce very well the experimentally observed double-peak structure, in particular for the spin-orbital Mott insulators Sr2_2IrO4_4 and Sr3_3Ir2_2O7_7. However, GWGW does not account well for the correlated metallic state of SrIrO3_3 owing to a much too small band renormalization, and this affects the overall quality of the optical conductivity. Our analysis describes well the progressive redshift of the main optical peaks as a function of dimensionality (nn), which is correlated with the gradual decrease of the electronic correlation (quantified by the constrained random phase approximation) towards the metallic n=n=\infty limit. We have also assessed the quality of a computationally cheaper BSE approach that is based on a model dielectric function and conducted on top of DFT+UU one-electron energies. Unfortunately, this model BSE approach does not accurately reproduce the outcome of the full GWGW+BSE method and leads to larger deviations to the measured spectra.Comment: 13 pages, 8 figure

    Anisotropic Magnetic Couplings and Structure-Driven Canted to Collinear Transitions in Spin-orbit Coupled Sr2IrO4

    Full text link
    We put forward a scheme to study the anisotropic magnetic couplings in Sr2IrO4 by mapping fully relativistic constrained noncollinear density functional theory including an on-site Hubbard U correction onto a general spin model Hamiltonian. This procedure allows for the simultaneous account and direct control of the lattice, spin and orbital interactions within a fully ab initio scheme. We compute the isotropic, single site anisotropy and Dzyaloshinskii-Moriya (DM) coupling parameters, and clarify that the origin of the canted magnetic state in Sr2IrO4 arises from the interplay between structural distortions and the competition between isotropic exchange and DM interactions. A complete magnetic phase diagram with respect to the tetragonal distortion and the rotation of IrO6 octahedra is constructed, revealing the presence of two types of canted to collinear magnetic transitions: a spin-flop transition with increasing tetragonal distortion and a complete quenching of the basal weak ferromagnetic moment below a critical octahedral rotation

    Symmetry breaking induced insulating electronic state in Pb9_{9}Cu(PO4_4)6_6O

    Full text link
    The recent experimental claim of room-temperature ambient-pressure superconductivity in a Cu-doped lead-apatite (LK-99) has ignited substantial research interest in both experimental and theoretical domains. Previous density functional theory (DFT) calculations with the inclusion of an on-site Hubbard interaction UU consistently predict the presence of flat bands crossing the Fermi level. This is in contrast to DFT plus dynamical mean field theory calculations, which reveal the Mott insulating behavior for the stoichiometric Pb9_{9}Cu(PO4_4)6_6O compound. Nevertheless, the existing calculations are all based on the P63/mP6_3/m structure, which is argued to be not the ground-state structure. Here, we revisit the electronic structure of Pb9_{9}Cu(PO4_4)6_6O with the energetically more favorable P3ˉP\bar{3} structure, fully taking into account electronic symmetry breaking. We examine all possible configurations for Cu substituting the Pb sites. Our results show that the doped Cu atoms exhibit a preference for substituting the Pb2 sites than the Pb1 sites. In both cases, the calculated substitutional formation energies are large, indicating the difficulty in incorporating Cu at the Pb sites. We find that most of structures with Cu at the Pb2 site tend to be insulating, while the structures with both two Cu atoms at the Pb1 sites (except one configuration) are predicted to be metallic by DFT+UU calculations. However, when accounting for the electronic symmetry breaking, some Cu-doped configurations previously predicted to be metallic (including the structure studied in previous DFT+UU calculations) become insulating. Our work highlights the importance of symmetry breaking in obtaining correct electronic state for Pb9_{9}Cu(PO4_4)6_6O, thereby reconciling previous DFT+UU and DFT+DMFT calculations.Comment: 19 pages, 9 figures (including Supplementary Material

    Comprehensive ab initio study of effects of alloying elements on generalized stacking fault energies of Ni and Ni3_3Al

    Full text link
    Excellent high-temperature mechanical properties of Ni-based single crystal superalloys (NSCSs) are attributed to the yield strength anomaly of Ni3_{3}Al that is intimately related to generalized stacking fault energies (GSFEs). Therefore, clarifying the effects of alloying elements on the GSFEs is of great significance for alloys design. Here, by means of ab initio density functional theory calculations, we systematically calculated the GSFEs of different slip systems of Ni and Ni3_{3}Al without and with alloying elements using the alias shear method. We obtained that for Ni, except for magnetic elements Mn, Fe, and Co, most of alloying elements decrease the unstable stacking fault energy (γusf\gamma_{usf}) of the [011ˉ](111)[01\bar{1}](111) and [112ˉ](111)[11\bar{2}](111) slip systems and also decrease the stable stacking fault energy (γsf\gamma_{sf}) of the [112ˉ](111)[11\bar{2}](111) slip system. For Ni3_{3}Al, most of alloying elements in groups IIIB-VIIB show a strong Al site preference. Except for Mn and Fe, the elements in groups VB-VIIB and the first column of group VIII increase the values of γusf\gamma_{usf} of different slip systems of Ni3_{3}Al. On the other hand, the elements in groups IIIB-VIIB also increase the value of γsf\gamma_{sf}. We found that Re is an excellent strengthening alloying element that significantly increases the slip barrier of the tailing slip process for Ni, and also enhances the slip barrier of the leading slip process of three slip systems for Ni3_{3}Al. W and Mo exhibit similar effects as Re. We predicted that Os, Ru, and Ir are good strengthening alloying elements as well, since they show the strengthening effects on both the leading and tailing slip process for Ni and Ni3_{3}Al

    Anisotropic linear and nonlinear charge-spin conversion in topological semimetal SrIrO3

    Full text link
    Over the past decade, utilizing spin currents in the linear response of electric field to manipulate magnetization states via spin-orbit torques (SOTs) is one of the core concepts for realizing a multitude of spintronic devices. Besides the linear regime, recently, nonlinear charge-spin conversion under the square of electric field has been recognized in a wide variety of materials with nontrivial spin textures, opening an emerging field of nonlinear spintronics. Here, we report the investigation of both linear and nonlinear charge-spin conversion in one single topological semimetal SrIrO3(110) thin film that hosts strong spin-orbit coupling and nontrivial spin textures in the momentum space. In the nonlinear regime, the observation of crystalline direction dependent response indicates the presence of anisotropic surface states induced spin-momentum locking near the Fermi level. Such anisotropic spin textures also give rise to spin currents in the linear response regime, which mainly contributes to the fieldlike SOT component. Our work demonstrates the power of combination of linear and nonlinear approaches in understanding and utilizing charge-spin conversion in topological materials.Comment: 18 pages, 5 figure

    Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    Get PDF
    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures

    Particle Size Distribution of Cemented Rockfill Effects on Strata Stability in Filling Mining

    No full text
    It is of great significance for engineering safety, economic benefits, environmental protection, and sustainable development to investigate the strata stability in filling mining with cemented rockfill. Consequently, this paper is based on a specific coal mine where we applied the fully-mechanized longwall mining and filling and designed a cemented rockfill material for which the particles satisfied the Talbot gradation. Uniaxial and triaxial compression experiments were carried out on the cemented rockfill specimen, which obtained the relations between the mechanical parameters (Poisson ratio, elastic modulus, compressive strength, cohesive force, internal friction angle, and tensile strength) and the particle size distribution of the aggregate. The excavation and filling processes in the coal seam were simulated based on the numerical software FLAC3D. The characteristics of the displacement and stress fields of the strata when the goaf was filled by cemented rockfill with different granule gradations were discussed. The influences of the particle size distribution and mining distance on the maximum subsidence displacement of the coal seam roof, internal stress of the backfill, and the stress of the rock mass in the coalface were analyzed. The feasibility and effectiveness of the filling mining with cemented rockfill to protect the integrity of the overlying strata were discussed. The results showed that optimizing the particle size distribution of the aggregate in cemented rockfill could increase the loading capacity of the backfill to improve the filling effect, effectively control the strata movement, and decrease the stress of rock mass in the coalface to reduce the potential danger
    corecore