2,291 research outputs found

    Public Opinion on Peace as a Reflection of Social Differentiation and Politicisation of Identity in Sri Lanka

    Full text link
    This article provides a critical analysis of the public opinion on peace in Sri Lanka, with consideration to two determinants: social differentiation and politicisation of identities. Specifically, it aims at developing arguments about the correlations between public opinion, social position, and political mobilisation. Inspired by Bourdieu\u27s concepts of habitus, social space, and political field, this article develops an empirical analysis of the links between ethnic identity and public opinion on peace, and between social differentiation and opinions within the Sinhalese majority community in Sri Lanka. This article argues that ethnic polarisation and politicisation were the foremost determinants of public opinion during the peace process in 2002-2009

    First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results

    Get PDF
    In the picture of eternal inflation, our observable universe resides inside a single bubble nucleated from an inflating false vacuum. Many of the theories giving rise to eternal inflation predict that we have causal access to collisions with other bubble universes, providing an opportunity to confront these theories with observation. We present the results from the first observational search for the effects of bubble collisions, using cosmic microwave background data from the WMAP satellite. Our search targets a generic set of properties associated with a bubble collision spacetime, which we describe in detail. We use a modular algorithm that is designed to avoid a posteriori selection effects, automatically picking out the most promising signals, performing a search for causal boundaries, and conducting a full Bayesian parameter estimation and model selection analysis. We outline each component of this algorithm, describing its response to simulated CMB skies with and without bubble collisions. Comparing the results for simulated bubble collisions to the results from an analysis of the WMAP 7-year data, we rule out bubble collisions over a range of parameter space. Our model selection results based on WMAP 7-year data do not warrant augmenting LCDM with bubble collisions. Data from the Planck satellite can be used to more definitively test the bubble collision hypothesis.Comment: Companion to arXiv:1012.1995. 41 pages, 23 figures. v2: replaced with version accepted by PRD. Significant extensions to the Bayesian pipeline to do the full-sky non-Gaussian source detection problem (previously restricted to patches). Note that this has changed the normalization of evidence values reported previously, as full-sky priors are now employed, but the conclusions remain unchange

    Comparing Infrared Dirac-Born-Infeld Brane Inflation to Observations

    Full text link
    We compare the Infrared Dirac-Born-Infeld (IR DBI) brane inflation model to observations using a Bayesian analysis. The current data cannot distinguish it from the \LambdaCDM model, but is able to give interesting constraints on various microscopic parameters including the mass of the brane moduli potential, the fundamental string scale, the charge or warp factor of throats, and the number of the mobile branes. We quantify some distinctive testable predictions with stringy signatures, such as the large non-Gaussianity, and the large, but regional, running of the spectral index. These results illustrate how we may be able to probe aspects of string theory using cosmological observations.Comment: 54 pages, 13 figures. v2: non-Gaussianity constraint has been applied to the model; parameter constraints have tightened significantly, conclusions unchanged. References added; v3, minor revision, PRD versio

    Primordial Black Holes, Eternal Inflation, and the Inflationary Parameter Space after WMAP5

    Full text link
    We consider constraints on inflation driven by a single, minimally coupled scalar field in the light of the WMAP5 dataset, as well as ACBAR and the SuperNova Legacy Survey. We use the Slow Roll Reconstruction algorithm to derive optimal constraints on the inflationary parameter space. The scale dependence in the slope of the scalar spectrum permitted by WMAP5 is large enough to lead to viable models where the small scale perturbations have a substantial amplitude when extrapolated to the end of inflation. We find that excluding parameter values which would cause the overproduction of primordial black holes or even the onset of eternal inflation leads to potentially significant constraints on the slow roll parameters. Finally, we present a more sophisticated approach to including priors based on the total duration of inflation, and discuss the resulting restrictions on the inflationary parameter space.Comment: v2: version published in JCAP. Minor clarifications and references adde

    The Energy Density of "Wound" Fields in a Toroidal Universe

    Full text link
    The observational limits on the present energy density of the Universe allow for a component that redshifts like 1/a21/a^2 and can contribute significantly to the total. We show that a possible origin for such a contribution is that the universe has a toroidal topology with "wound" scalar fields around its cycles.Comment: 11 pages, 1figur

    Probing the primordial power spectra with inflationary priors

    Full text link
    We investigate constraints on power spectra of the primordial curvature and tensor perturbations with priors based on single-field slow-roll inflation models. We stochastically draw the Hubble slow-roll parameters and generate the primordial power spectra using the inflationary flow equations. Using data from recent observations of CMB and several measurements of geometrical distances in the late Universe, Bayesian parameter estimation and model selection are performed for models that have separate priors on the slow-roll parameters. The same analysis is also performed adopting the standard parameterization of the primordial power spectra. We confirmed that the scale-invariant Harrison-Zel'dovich spectrum is disfavored with increased significance from previous studies. While current observations appear to be optimally modeled with some simple models of single-field slow-roll inflation, data is not enough constraining to distinguish these models.Comment: 23 pages, 3 figures, 7 tables, accepted for publication in JCA

    An integrated general practice and pharmacy-based intervention to promote the use of appropriate preventive medications among individuals at high cardiovascular disease risk: protocol for a cluster randomized controlled trial

    Get PDF
    Background: Cardiovascular diseases (CVD) are responsible for significant morbidity, premature mortality, and economic burden. Despite established evidence that supports the use of preventive medications among patients at high CVD risk, treatment gaps remain. Building on prior evidence and a theoretical framework, a complex intervention has been designed to address these gaps among high-risk, under-treated patients in the Australian primary care setting. This intervention comprises a general practice quality improvement tool incorporating clinical decision support and audit/feedback capabilities; availability of a range of CVD polypills (fixed-dose combinations of two blood pressure lowering agents, a statin ± aspirin) for prescription when appropriate; and access to a pharmacy-based program to support long-term medication adherence and lifestyle modification. Methods: Following a systematic development process, the intervention will be evaluated in a pragmatic cluster randomized controlled trial including 70 general practices for a median period of 18 months. The 35 general practices in the intervention group will work with a nominated partner pharmacy, whereas those in the control group will provide usual care without access to the intervention tools. The primary outcome is the proportion of patients at high CVD risk who were inadequately treated at baseline who achieve target blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) levels at the study end. The outcomes will be analyzed using data from electronic medical records, utilizing a validated extraction tool. Detailed process and economic evaluations will also be performed. Discussion: The study intends to establish evidence about an intervention that combines technological innovation with team collaboration between patients, pharmacists, and general practitioners (GPs) for CVD prevention. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN1261600023342

    Cosmological Constraints on Dissipative Models of Inflation

    Full text link
    (Abridged) We study dissipative inflation in the regime where the dissipative term takes a specific form, \Gamma=\Gamma(\phi), analyzing two models in the weak and strong dissipative regimes with a SUSY breaking potential. After developing intuition about the predictions from these models through analytic approximations, we compute the predicted cosmological observables through full numerical evolution of the equations of motion, relating the mass scale and scale of dissipation to the characteristic amplitude and shape of the primordial power spectrum. We then use Markov Chain Monte Carlo techniques to constrain a subset of the models with cosmological data from the cosmic microwave background (WMAP three-year data) and large scale structure (SDSS Luminous Red Galaxy power spectrum). We find that the posterior distributions of the dissipative parameters are highly non-Gaussian and their allowed ranges agree well with the expectations obtained using analytic approximations. In the weak regime, only the mass scale is tightly constrained; conversely, in the strong regime, only the dissipative coefficient is tightly constrained. A lower limit is seen on the inflation scale: a sub-Planckian inflaton is disfavoured by the data. In both weak and strong regimes, we reconstruct the limits on the primordial power spectrum and show that these models prefer a {\it red} spectrum, with no significant running of the index. We calculate the reheat temperature and show that the gravitino problem can be overcome with large dissipation, which in turn leads to large levels of non-Gaussianity: if dissipative inflation is to evade the gravitino problem, the predicted level of non-Gaussianity might be seen by the Planck satellite.Comment: 14 pages, 9 figures, Accepted by JCAP without text changes, References adde

    Cascading on extragalactic background light

    Full text link
    High-energy gamma-rays propagating in the intergalactic medium can interact with background infrared photons to produce e+e- pairs, resulting in the absorption of the intrinsic gamma-ray spectrum. TeV observations of the distant blazar 1ES 1101-232 were thus recently used to put an upper limit on the infrared extragalactic background light density. The created pairs can upscatter background photons to high energies, which in turn may pair produce, thereby initiating a cascade. The pairs diffuse on the extragalactic magnetic field (EMF) and cascade emission has been suggested as a means for measuring its intensity. Limits on the IR background and EMF are reconsidered taking into account cascade emissions. The cascade equations are solved numerically. Assuming a power-law intrinsic spectrum, the observed 100 MeV - 100 TeV spectrum is found as a function of the intrinsic spectral index and the intensity of the EMF. Cascades emit mainly at or below 100 GeV. The observed TeV spectrum appears softer than for pure absorption when cascade emission is taken into account. The upper limit on the IR photon background is found to be robust. Inversely, the intrinsic spectra needed to fit the TeV data are uncomfortably hard when cascade emission makes a significant contribution to the observed spectrum. An EMF intensity around 1e-8 nG leads to a characteristic spectral hump in the GLAST band. Higher EMF intensities divert the pairs away from the line-of-sight and the cascade contribution to the spectrum becomes negligible.Comment: 5 pages, to be published as a research note in A&

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v
    corecore