1,500 research outputs found
A novel sampling theorem on the rotation group
We develop a novel sampling theorem for functions defined on the
three-dimensional rotation group SO(3) by connecting the rotation group to the
three-torus through a periodic extension. Our sampling theorem requires
samples to capture all of the information content of a signal band-limited at
, reducing the number of required samples by a factor of two compared to
other equiangular sampling theorems. We present fast algorithms to compute the
associated Fourier transform on the rotation group, the so-called Wigner
transform, which scale as , compared to the naive scaling of .
For the common case of a low directional band-limit , complexity is reduced
to . Our fast algorithms will be of direct use in speeding up the
computation of directional wavelet transforms on the sphere. We make our SO3
code implementing these algorithms publicly available.Comment: 5 pages, 2 figures, minor changes to match version accepted for
publication. Code available at http://www.sothree.or
How isotropic is the Universe?
A fundamental assumption in the standard model of cosmology is that the
Universe is isotropic on large scales. Breaking this assumption leads to a set
of solutions to Einstein's field equations, known as Bianchi cosmologies, only
a subset of which have ever been tested against data. For the first time, we
consider all degrees of freedom in these solutions to conduct a general test of
isotropy using cosmic microwave background temperature and polarization data
from Planck. For the vector mode (associated with vorticity), we obtain a limit
on the anisotropic expansion of (95%
CI), which is an order of magnitude tighter than previous Planck results that
used CMB temperature only. We also place upper limits on other modes of
anisotropic expansion, with the weakest limit arising from the regular tensor
mode, (95% CI). Including all
degrees of freedom simultaneously for the first time, anisotropic expansion of
the Universe is strongly disfavoured, with odds of 121,000:1 against.Comment: 6 pages, 1 figure, v2: replaced with version accepted by PR
A framework for testing isotropy with the cosmic microwave background
We present a new framework for testing the isotropy of the Universe using
cosmic microwave background data, building on the nested-sampling ANICOSMO
code. Uniquely, we are able to constrain the scalar, vector and tensor degrees
of freedom alike; previous studies only considered the vector mode (linked to
vorticity). We employ Bianchi type VII cosmologies to model the anisotropic
Universe, from which other types may be obtained by taking suitable limits. In
a separate development, we improve the statistical analysis by including the
effect of Bianchi power in the high-, as well as the low-,
likelihood. To understand the effect of all these changes, we apply our new
techniques to WMAP data. We find no evidence for anisotropy, constraining shear
in the vector mode to (95% CL). For the
first time, we place limits on the tensor mode; unlike other modes, the tensor
shear can grow from a near-isotropic early Universe. The limit on this type of
shear is (95% CL).Comment: 11 pages, 6 figures, v3: minor modifications to match version
accepted by MNRA
Sparse Inpainting and Isotropy
Sparse inpainting techniques are gaining in popularity as a tool for
cosmological data analysis, in particular for handling data which present
masked regions and missing observations. We investigate here the relationship
between sparse inpainting techniques using the spherical harmonic basis as a
dictionary and the isotropy properties of cosmological maps, as for instance
those arising from cosmic microwave background (CMB) experiments. In
particular, we investigate the possibility that inpainted maps may exhibit
anisotropies in the behaviour of higher-order angular polyspectra. We provide
analytic computations and simulations of inpainted maps for a Gaussian
isotropic model of CMB data, suggesting that the resulting angular trispectrum
may exhibit small but non-negligible deviations from isotropy.Comment: 18 pages, 6 figures. v3: matches version published in JCAP;
formatting changes and single typo correction only. Code available from
http://zuserver2.star.ucl.ac.uk/~smf/code.htm
Bayesian Analysis of Inflation II: Model Selection and Constraints on Reheating
We discuss the model selection problem for inflationary cosmology. We couple
ModeCode, a publicly-available numerical solver for the primordial perturbation
spectra, to the nested sampler MultiNest, in order to efficiently compute
Bayesian evidence. Particular attention is paid to the specification of
physically realistic priors, including the parametrization of the
post-inflationary expansion and associated thermalization scale. It is
confirmed that while present-day data tightly constrains the properties of the
power spectrum, it cannot usefully distinguish between the members of a large
class of simple inflationary models. We also compute evidence using a simulated
Planck likelihood, showing that while Planck will have more power than WMAP to
discriminate between inflationary models, it will not definitively address the
inflationary model selection problem on its own. However, Planck will place
very tight constraints on any model with more than one observationally-distinct
inflationary regime -- e.g. the large- and small-field limits of the hilltop
inflation model -- and put useful limits on different reheating scenarios for a
given model.Comment: ModeCode package available from
http://zuserver2.star.ucl.ac.uk/~hiranya/ModeCode/ModeCode (requires CosmoMC
and MultiNest); to be published in PRD. Typos fixe
Hierarchical Bayesian Detection Algorithm for Early-Universe Relics in the Cosmic Microwave Background
A number of theoretically well-motivated additions to the standard
cosmological model predict weak signatures in the form of spatially localized
sources embedded in the cosmic microwave background (CMB) fluctuations. We
present a hierarchical Bayesian statistical formalism and a complete data
analysis pipeline for testing such scenarios. We derive an accurate
approximation to the full posterior probability distribution over the
parameters defining any theory that predicts sources embedded in the CMB, and
perform an extensive set of tests in order to establish its validity. The
approximation is implemented using a modular algorithm, designed to avoid a
posteriori selection effects, which combines a candidate-detection stage with a
full Bayesian model-selection and parameter-estimation analysis. We apply this
pipeline to theories that predict cosmic textures and bubble collisions,
extending previous analyses by using: (1) adaptive-resolution techniques,
allowing us to probe features of arbitrary size, and (2) optimal filters, which
provide the best possible sensitivity for detecting candidate signatures. We
conclude that the WMAP 7-year data do not favor the addition of either cosmic
textures or bubble collisions to the standard cosmological model, and place
robust constraints on the predicted number of such sources. The expected
numbers of bubble collisions and cosmic textures on the CMB sky within our
detection thresholds are constrained to be fewer than 4.0 and 5.2 at 95%
confidence, respectively.Comment: 34 pages, 18 figures. v3: corrected very minor typos to match
published versio
Cosmological Constraints on Dissipative Models of Inflation
(Abridged) We study dissipative inflation in the regime where the dissipative
term takes a specific form, \Gamma=\Gamma(\phi), analyzing two models in the
weak and strong dissipative regimes with a SUSY breaking potential. After
developing intuition about the predictions from these models through analytic
approximations, we compute the predicted cosmological observables through full
numerical evolution of the equations of motion, relating the mass scale and
scale of dissipation to the characteristic amplitude and shape of the
primordial power spectrum. We then use Markov Chain Monte Carlo techniques to
constrain a subset of the models with cosmological data from the cosmic
microwave background (WMAP three-year data) and large scale structure (SDSS
Luminous Red Galaxy power spectrum). We find that the posterior distributions
of the dissipative parameters are highly non-Gaussian and their allowed ranges
agree well with the expectations obtained using analytic approximations. In the
weak regime, only the mass scale is tightly constrained; conversely, in the
strong regime, only the dissipative coefficient is tightly constrained. A lower
limit is seen on the inflation scale: a sub-Planckian inflaton is disfavoured
by the data. In both weak and strong regimes, we reconstruct the limits on the
primordial power spectrum and show that these models prefer a {\it red}
spectrum, with no significant running of the index. We calculate the reheat
temperature and show that the gravitino problem can be overcome with large
dissipation, which in turn leads to large levels of non-Gaussianity: if
dissipative inflation is to evade the gravitino problem, the predicted level of
non-Gaussianity might be seen by the Planck satellite.Comment: 14 pages, 9 figures, Accepted by JCAP without text changes,
References adde
(Lack of) Cosmological evidence for dark radiation after Planck
We use Bayesian model comparison to determine whether extensions to Standard-Model neutrino physics primarily additional effective numbers of neutrinos and/or massive neutrinos are merited by the latest cosmological data. Given the significant advances in cosmic microwave background (CMB) observations represented by the Planck data, we examine whether Planck temperature and CMB lensing data, in combination with lower redshift data, have strengthened (or weakened) the previous findings. We conclude that the state-of-the-art cosmological data do not show evidence for deviations from the standard (ΛCDM) cosmological model (which has three massless neutrino families). This does not mean that the model is necessarily correct in fact we know it is incomplete as neutrinos are not massless but it does imply that deviations from the standard model (e.g., non-zero neutrino mass) are too small compared to the current experimental uncertainties to be inferred from cosmological data alone
- …