52 research outputs found

    Avian Influenza (H5N1) Virus of Clade 2.3.2 in Domestic Poultry in India

    Get PDF
    South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80–2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains

    Herpes zoster related hospitalization after inactivated (CoronaVac) and mRNA (BNT162b2) SARS-CoV-2 vaccination: A self-controlled case series and nested case-control study

    Get PDF
    BACKGROUND: Stimulation of immunity by vaccination may elicit adverse events. There is currently inconclusive evidence on the relationship between herpes zoster related hospitalization and COVID-19 vaccination. This study aimed to evaluate the effect of inactivated virus (CoronaVac, Sinovac) and mRNA (BNT162b2, BioNTech/Fosun Pharma) COVID-19 vaccine on the risk of herpes zoster related hospitalization. METHODS: Self-controlled case series (SCCS) analysis was conducted using the data from the electronic health records in Hospital Authority and COVID-19 vaccination records in the Department of Health in Hong Kong. We conducted the SCCS analysis including patients with a first primary diagnosis of herpes zoster in the hospital inpatient setting between February 23 and July 31, 2021. A confirmatory analysis by nested case-control method was also conducted. Each herpes zoster case was randomly matched with ten controls according to sex, age, Charlson comorbidity index, and date of hospital admission. Conditional Poisson regression and logistic regression models were used to assess the potential excess rates of herpes zoster after vaccination. FINDINGS: From February 23 to July 31, 2021, a total of 16 and 27 patients were identified with a first primary hospital diagnosis of herpes zoster within 28 days after CoronaVac and BNT162b2 vaccinations. The incidence of herpes zoster was 7.9 (95% Confidence interval [CI]: 5.2–11.5) for CoronaVac and 7.1 (95% CI: 4.1–11.5) for BNT162b2 per 1,000,000 doses administered. In SCCS analysis, CoronaVac vaccination was associated with significantly higher risk of herpes zoster within 14 days after first dose (adjusted incidence rate ratio [aIRR]=2.67, 95% CI: 1.08–6.59) but not in other periods afterwards compared to the baseline period. Regarding BNT162b2 vaccination, a significantly increased risk of herpes zoster was observed after first dose up to 14 days after second dose (0-13 days after first dose: aIRR=5.23, 95% CI: 1.61–17.03; 14–27 days after first dose: aIRR=5.82, 95% CI: 1.62–20.91; 0-13 days after second dose: aIRR=5.14, 95% CI: 1.29–20.47). Using these relative rates, we estimated that there has been an excess of approximately 5 and 7 cases of hospitalization as a result of herpes zoster after every 1,000,000 doses of CoronaVac and BNT162b2 vaccination, respectively. The findings in the nested case control analysis showed similar results. INTERPRETATION: We identified an increased risk of herpes zoster related hospitalization after CoronaVac and BNT162b2 vaccinations. However, the absolute risks of such adverse event after CoronaVac and BNT162b2 vaccinations were very low. In locations where COVID-19 is prevalent, the protective effects on COVID-19 from vaccinations will greatly outweigh the potential side effects of vaccination. FUNDING: The project was funded by Research Grant from the Food and Health Bureau, The Government of the Hong Kong Special Administrative Region (Ref. No.COVID19F01). FTTL (Francisco Tsz Tsun Lai) and ICKW (Ian Chi Kei Wong)’s posts were partly funded by D(2)4H; hence this work was partly supported by AIR@InnoHK administered by Innovation and Technology Commission

    The Effects of Air Pollution on Mortality in Socially Deprived Urban Areas in Hong Kong, China

    Get PDF
    Background: Poverty is a major determinant of population health, but little is known about its role in modifying air pollution effects. Objectives: We set out to examine whether people residing in socially deprived communities are at higher mortality risk from ambient air pollution. Methods: This study included 209 tertiary planning units (TPUs), the smallest units for town planning in the Special Administrative Region of Hong Kong, China. The socioeconomic status of each TPU was measured by a social deprivation index (SDI) derived from the proportions of the population with a) unemployment, b) monthly household income < US$250, c) no schooling at all, d) one-person household, e) never-married status, and f) subtenancy, from the 2001 Population Census. TPUs were classified into three levels of SDI: low, middle, and high. We performed time-series analysis with Poisson regression to examine the association between changes in daily concentrations of ambient air pollution and daily number of deaths in each SDI group for the period from January 1996 to December 2002. We evaluated the differences in pollution effects between different SDI groups using a case-only approach with logistic regression. Results: We found significant associations of nitrogen dioxide, sulfur dioxide, particulate matter with aerodynamic diameter < 10 ÎŒm, and ozone with all nonaccidental and cardiovascular mortality in areas of middle or high SDI (p < 0.05). Health outcomes, measured as all nonaccidental, cardiovascular, and respiratory mortality, in people residing in high SDI areas were more strongly associated with SO 2 and NO 2 compared with those in middle or low SDI areas. Conclusions: Neighborhood socioeconomic deprivation increases mortality risks associated with air pollution.published_or_final_versio

    Transmission of pandemic influenza H1N1 (2009) in Vietnamese swine in 2009-2010.

    No full text
    International audiencePlease cite this paper as: Trevennec et al. (2011) Transmission of pandemic influenza H1N1 (2009) in Vietnamese swine in 2009-2010. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750-2659.2011.00324.x. Background The pandemic of 2009 was caused by an H1N1 (H1N1pdm) virus of swine origin. This pandemic virus has repeatedly infected swine through reverse zoonosis, although the extent of such infection in swine remains unclear. Objective This study targets small and commercial pig producers in North Vietnam, in order to estimate the extent of H1N1pdm infection in swine and to identify the risk factors of infection. Methods Virologic and serologic surveillance of swine was carried out in 2009-2010 in pig farms (38 swabs and 1732 sera) and at a pig slaughterhouse (710 swabs and 459 sera) in North Vietnam. The sera were screened using a influenza type A-reactive ELISA assay, and positive sera were tested using hemagglutination inhibition tests for antibody to a panel of H1-subtype viruses representing pandemic (H1N1) 2009 (H1N1pdm), triple reassortant (TRIG), classical swine (CS), and Eurasian avian-like (EA) swine lineages. Farm-level risk factors were identified using a zero-inflated negative binomial model. Results We found a maximal seroprevalence of H1N1pdm of 55*6% [95% CI: 38*1-72*1] in the slaughterhouse at the end of December 2009, 2 weeks after the peak of reported human fatalities with H1N1pdm. Farm-level seroprevalence was 29% [95% CI: 23*2-35*7]. In seropositive farms, within-herd seroprevalence ranged from 10 to 100%. We identified an increased risk of infection for farms that specialized in fattening and a decreased risk of infection in farms hiring external swine workers. Conclusions Our findings suggest extensive reverse-zoonotic transmission from humans to pigs with subsequent onward transmission within pig herds

    Recognition of Double-Stranded RNA and Regulation of Interferon Pathway by Toll-Like Receptor 10

    No full text
    Toll-like receptor (TLR)-10 remains an orphan receptor without well-characterized ligands or functions. Here, we reveal that TLR10 is predominantly localized to endosomes and binds dsRNA in vitro at endosomal pH, suggesting that dsRNA is a ligand of TLR10. Recognition of dsRNA by TLR10 activates recruitment of myeloid differentiation primary response gene 88 for signal transduction and suppression of interferon regulatory factor-7 dependent type I IFN production. We also demonstrate crosstalk between TLR10 and TLR3, as they compete with each other for dsRNA binding. Our results suggest for the first time that dsRNA is a ligand for TLR10 and propose novel dual functions of TLR10 in regulating IFN signaling: first, recognition of dsRNA as a nucleotide-sensing receptor and second, sequestration of dsRNA from TLR3 to inhibit TLR3 signaling in response to dsRNA stimulation
    • 

    corecore