1,154 research outputs found

    Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation

    Get PDF
    We propose a method to generate ‘genetically modified’ (GM) initial conditions for high-resolution simulations of galaxy formation in a cosmological context. Building on the Hoffman–Ribak algorithm, we start from a reference simulation with fully random initial conditions, then make controlled changes to specific properties of a single halo (such as its mass and merger history). The algorithm demonstrably makes minimal changes to other properties of the halo and its environment, allowing us to isolate the impact of a given modification. As a significant improvement over previous work, we are able to calculate the abundance of the resulting objects relative to the reference simulation. Our approach can be applied to a wide range of cosmic structures and epochs; here we study two problems as a proof of concept. First, we investigate the change in density profile and concentration as the collapse times of three individual haloes are varied at fixed final mass, showing good agreement with previous statistical studies using large simulation suites. Secondly, we modify the z = 0 mass of haloes to show that our theoretical abundance calculations correctly recover the halo mass function. The results demonstrate that the technique is robust, opening the way to controlled experiments in galaxy formation using hydrodynamic zoom simulations

    Inverted initial conditions: Exploring the growth of cosmic structure and voids

    Get PDF
    We introduce and explore "paired" cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion ÎŽAĂ°x; tinitialÞ ÂŒ −ήBĂ°x; tinitialÞ (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand to create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Generalizations of the method to more elaborate field transformations are suggested

    Cosmological Constraints on Dissipative Models of Inflation

    Full text link
    (Abridged) We study dissipative inflation in the regime where the dissipative term takes a specific form, \Gamma=\Gamma(\phi), analyzing two models in the weak and strong dissipative regimes with a SUSY breaking potential. After developing intuition about the predictions from these models through analytic approximations, we compute the predicted cosmological observables through full numerical evolution of the equations of motion, relating the mass scale and scale of dissipation to the characteristic amplitude and shape of the primordial power spectrum. We then use Markov Chain Monte Carlo techniques to constrain a subset of the models with cosmological data from the cosmic microwave background (WMAP three-year data) and large scale structure (SDSS Luminous Red Galaxy power spectrum). We find that the posterior distributions of the dissipative parameters are highly non-Gaussian and their allowed ranges agree well with the expectations obtained using analytic approximations. In the weak regime, only the mass scale is tightly constrained; conversely, in the strong regime, only the dissipative coefficient is tightly constrained. A lower limit is seen on the inflation scale: a sub-Planckian inflaton is disfavoured by the data. In both weak and strong regimes, we reconstruct the limits on the primordial power spectrum and show that these models prefer a {\it red} spectrum, with no significant running of the index. We calculate the reheat temperature and show that the gravitino problem can be overcome with large dissipation, which in turn leads to large levels of non-Gaussianity: if dissipative inflation is to evade the gravitino problem, the predicted level of non-Gaussianity might be seen by the Planck satellite.Comment: 14 pages, 9 figures, Accepted by JCAP without text changes, References adde

    Tachyon warm inflationary universe models

    Get PDF
    Warm inflationary universe models in a tachyon field theory are studied. General conditions required for these models to be realizable are derived and discussed. We describe scalar perturbations (in the longitudinal gauge) and tensor perturbations for these scenarios. We develop our models for a constant dissipation parameter Γ\Gamma in one case and one dependent on ϕ\phi in the other case. We have been successful in describing such of inflationary universe models. We use recent astronomical observations for constraining the parameters appearing in our model. Also, our results are compared with their analogous found in the cool inflationary case.Comment: 21 pages, Accepted by JCA

    Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    Full text link
    We obtain the effective inflaton potential during slow roll inflation by including the one loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as quantum fluctuations from light scalars and light Dirac fermions generically coupled to the inflaton. During slow roll inflation there is a clean and unambiguous separation between superhorizon and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow roll parameters which measure the departure from scale invariance in each case.Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop quantum corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow-roll and in the (H/M_PL)^2 expansion. This study provides a complete assessment of the backreaction problem up to one loop including bosonic and fermionic degrees of freedom. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables:n_s, r and dn_s/dln k. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations.Comment: 18 pages, no figure

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v

    Extended Curvaton reheating in inflationary models

    Get PDF
    The curvaton reheating in a non-oscillatory inflationary universe model is studied in a Jordan-Brans-Dicke theory. For different scenarios, the temperature of reheating is computed. The result tells us that the reheating temperature becomes practically independent of the Jordan-Brans-Dicke parameter ww. This reheating temperature results to be quite different when compared with that obtained from Einstein`s theory of gravity.Comment: Accepted by JCAP, 12 pages, 1 Figur

    Cross-Correlation Detection of Point Sources in WMAP First Year Data

    Get PDF
    We apply a Cross-correlation (CC) method developed previously for detecting gamma-ray point sources to the WMAP first year data by using the Point-Spread Function of WMAP and obtain a full sky CC coefficient map. Analyzing this map, we find that the CC method is a powerful tool to examine the WMAP foreground residuals which can be further cleaned accordingly. Evident foreground signals are found in WMAP foreground cleaned maps and Tegmark cleaned map. In this process 101 point-sources are detected, and 26 of them are new sources besides the originally listed WMAP 208 sources. We estimate the flux of these new sources and verify them by another method. As a result, a revised mask file based on the WMAP first year data is produced by including these new sources.Comment: 14 pages, 10 figures; accepted for publication by ChJA

    High order correlation functions for self interacting scalar field in de Sitter space

    Full text link
    We present the expressions of the three- and four-point correlation functions of a self interacting light scalar field in a de Sitter spacetime at tree order respectively for a cubic and a quartic potential. Exact expressions are derived and their limiting behaviour on super-horizon scales are presented. Their essential features are shown to be similar to those obtained in a classical approach.Comment: 8 pages, 4 figure
    • 

    corecore