2 research outputs found

    Simulation study of resistor networks applied to an array of 256 SiPMs

    Full text link
    [EN] In this work we describe a procedure to reduce the number of signals detected by an array of 256 Silicon Photo-multipliers (SiPMs) using a resistor network to divide the signal charge into few readout channels. Several configurations were modeled, and the pulsed signal at the readout contacts were simulated. These simulation results were experimentally tested on a specifically designed and manufactured set of printed circuit boards. Three network configurations were modeled. The modeling provided encouraging results for all three configurations. The measurements on the prototypes constructed for this study, however, provided useful position-sensitivity for only one of the network configurations. The lack of input signal amplification into the networks, the SiPM dark current, as well as the complexity of an eight layers board with parasitic capacitances, could have caused the degradation of resolving the impact photon position. This is hard to overcome with external printed circuit boards and components.This work was supported by the Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I) under Grant FIS2010-21216-CO2-01, the Valencian Local Government under Grant PROMETEO 2008/114 and through the JAE-Predoc grant from CSIC (BOE 29/01/2010).Gonzalez, A. J., Moreno, M., Barbera, J., Conde, P., Hernandez, L., Moliner, L., . . . Benlloch, J. M. (2013). Simulation study of resistor networks applied to an array of 256 SiPMs. IEEE Transactions on Nuclear Science, 60(2), 592-598. doi:10.1109/TNS.2012.2226051S59259860

    Innovative PET detector concept based on SiPMs and continuous crystals

    Full text link
    The use of Silicon Photomultipliers (SiPM) has been proposed for Positron Emission Tomography (PET) readout because they are hardly affected by magnetic fields and their time response enables Time of Flight measurements. This work proposes an array of SiPM to be coupled to a monolithic LYSO crystal by means of a series of optical devices. The emitted light distribution by the scintillation crystal will be accurately determined using an Application Specific Integrated Circuit. The described sensor block aims to determine the planar coordinates and depth of interaction of the gamma ray with sub-millimetrical precision. In this work we present the initial studies regarding edge effects due to thick monolithic crystals and how to overcome these limitations by means of optical devices namely faceplates and light concentrators. We will also discuss on the alignment of such optical devices with the SiPMsGonzález Martínez, AJ.; Peiró Cloquell, A.; Sánchez Martínez, F.; Vidal San Sebastian, LF.; Benlloch Baviera, JM. (2012). Innovative PET detector concept based on SiPMs and continuous crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 695:213-217. doi:10.1016/j.nima.2011.11.029S21321769
    corecore