26 research outputs found
Path of Promoting Industrial Transformation and Upgrading Based on Rural Revitalization: A Case Study of Green Plum Industry in Luhe County of Shanwei City
Taking green plum Industry in Luhe County of Shanwei City in Guangdong Province as an example, this paper made a precise positioning, based on the characteristics of rural tourism resources in Yongchuan Township, took the current situation as the guide and improving the tourism function as the carrier, made an innovation of the rural tourism industry system, in order to improve the quality of rural tourism development, and realize the strategic goal of rural revitalization
Online prediction of network-level public transport demand based on principle component analysis
Online demand prediction plays an important role in transport network services from operations, controls to management, and information provision. However, the online prediction models are impacted by streaming data quality issues with noise measurements and missing data. To address these, we develop a robust prediction method for online network-level demand prediction in public transport. It consists of a PCA method to extract eigen demand images and an optimization-based pattern recognition model to predict the weights of eigen demand images by making use of the partially observed real-time data up to the prediction time in a day. The prediction model is robust to data quality issues given that the eigen demand images are stable and the predicted weights of them are optimized using the network level data (less impacted by local data quality issues). In the case study, we validate the accuracy and transferability of the model by comparing it with benchmark models and evaluate the robustness in tolerating data quality issues of the proposed model. The experimental results demonstrate that the proposed Pattern Recognition Prediction based on PCA (PRP-PCA) consistently outperforms other benchmark models in accuracy and transferability. Moreover, the model shows high robustness in accommodating data quality issues. For example, the PRP-PCA model is robust to missing data up to 50% regardless of the noise level. We also discuss the hidden patterns behind the network level demand. The visualization analysis shows that eigen demand images are significantly connected to the network structure and station activity variabilities. Though the demand changes dramatically before and after the pandemic, the eigen demand images are consistent over time in Stockholm
The Effect of Multi-Years Reclaimed Water Irrigation on Dryland Carbon Sequestration in the North China Plain
Reclaimed water is an alternative water source which could alleviate the shortage of water resources in agricultural systems. Many researchers have studied the effect of reclaimed water on soil environment, crop yield, etc. However, carbon sequestration in reclaimed water irrigated agricultural systems is less studied. This study investigates methane uptake and photosynthesis in reclaimed water irrigation systems contributing to carbon sequestration estimation and analyzes the important factors impacting them. The results show that CH4 uptake is related to soil water-filled pore space (WFPS) with a quadratic and it has the highest uptake when WFPS is between 40 and 50%. Long-term reclaimed water irrigation could significantly decrease (p < 0.05) CH4 uptake and macroaggregate stability in the topsoil. However, reclaimed water had no significant impact on photosynthesis in comparison. The type of fertilizer is an important factor which impacts CH4 emission from soil; urea had a lower CH4 uptake and a higher CO2 emission than slow-released fertilizer. Overall, reclaimed water irrigation could effectively decrease soil carbon sequestration. A soil wetted proportion level of 40–50% was recommended in this study for favorable methane oxidation. Slow-released fertilizer in reclaimed water irrigated agriculture could better control soil carbon emission and soil carbon absorption
Comparative efficacy and safety of sodium–glucose cotransporter 2 inhibitors for renal outcomes in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis
AbstractIn this study, the summarized WMDs and RRs were calculated using a pairwise analysis and a network meta-analysis with a random effects model, to compare and rank the efficacy and safety of SGLT-2i for renal outcomes in patients with T2DM. Among 1894 identified articles, 30 trials including 50,244 patients with T2DM were evaluated. Network analysis revealed that the administration of canagliflozin was associated with a reduced risk of renal impairment (surface under the cumulative ranking: 90.8%). Further, although the administration of SGLT-2i was not associated with the risk of renal impairment (RR = 0.88, 95%CI = 0.68–1.15, p = 0.354), the administration of empagliflozin was associated with a reduced risk of renal impairment compared to that with the administration of placebo (RR = 0.74, 95%CI = 0.62–0.90, p = 0.002). Moreover, compared with the administration of a placebo, the administration of 50, 100, and 200 mg of canagliflozin was associated with lower serum creatinine levels. Furthermore, compared with the administration of a placebo, the administration of 100 mg canagliflozin, 2.5 mg dapagliflozin, and 25 mg empagliflozin was associated with a lower reduction in the estimated glomerular filtration rate. Except for 300 mg canagliflozin, all SGLT-2i were associated with greater increases in blood urea nitrogen levels (WMD = 1.39, 95%CI = 1.20–1.59, p < 0.001). Finally, the administration of all SGLT-2i significantly increased the ratio of urinary glucose to creatinine compared with the ratio upon administration of placebo (WMD = 36.21, 95%CI = 31.50–40.92, p < 0.001). Briefly, canagliflozin exerts the greatest therapeutic effect in terms of reducing the risk of renal impairment. Empagliflozin and canagliflozin may be more effective than other SGLT-2i in preventing renal impairment
Impact of Nutritional Supplements on the Fitness of the Parasitoid <i>Binodoxys communis</i> (Gahan)
Alterative nutritional foods consumed by adult parasitoids play an important role in their fitness and ability to control pests because of food scarcity in many crops. While adult parasitoids feed on various sugars, they vary in their nutritional value for parasitoids. We assessed the effects of seven sugars (fructose, glucose, sucrose, trehalose, maltose, melezitose, and sorbitol) on the longevity, parasitism ability, parasitism behavior, and flight ability of B. communis, an important parasitoid of cotton aphids. We found that access to glucose, sucrose, or fructose, increased B. communis adult longevity more than the other sugars offered. All sugars except trehalose increased the parasitism rate to more than 50% compared to the starved control (only provided with water). We then compared parasitoid behaviors of wasps fed glucose, sucrose, or fructose to that of the starved control (with access only to water) and found that those fed B. communis spent more time either examining or attacking aphids than parasitoids in the control group, which spent more time walking or resting. Also, consumption of glucose, sucrose, or fructose also significantly improved the flight ability (the total flight distance, flight time, and average flight speed) of B. communis
Exploring EFL learners’ perceived promise and limitations of using an artificial intelligence speech evaluation system for speaking practice
This study explores English as a Foreign Language (EFL) learners' perceptions of the promise and limitations of EAP Talk, an AI-based speech evaluation system, for speaking practice. Using a mixed-methods approach, data were collected from 366 EFL learners across five universities through questionnaires and semi-structured interviews. The findings reveal that EAP Talk significantly enhances speaking skills, including pronunciation, grammar accuracy, idea-organization, read-aloud, and presentation skills. Participants appreciated the convenience, motivational aspects, and institutional efficiency of EAP Talk, which allowed for flexible and autonomous learning. However, several limitations were identified. Issues with the accuracy of voice recognition and score feedback affected learners' confidence in the feedback. The relevance of practice materials to academic courses was another concern, as was the limited detail in the feedback provided by EAP Talk, which often lacked comprehensive explanations and corrective guidance. The absence of feedback on grammar accuracy and textual organization further limited the tool's effectiveness for developing comprehensive speaking proficiency. These findings suggest that while EAP Talk holds significant potential for enhancing language learning, ongoing improvements are necessary to address its limitations. This study contributes to the understanding of how AI tools can support EFL learners for speaking practice
High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100 degrees C temperature range
Dense and predominantly single-phase Cr2AlC MAX phase coatings without columnar structure were fabricated using an easy combined arc/sputtering deposition method followed by annealing. Isothermal oxidation of coatings was conducted under flowing air for 40 h M 900 - 1100 degrees C. Although the results revealed that the oxide scale showed strong dependence upon oxidation temperature, the coated samples remained intact even after oxidation M 1100 degrees C. Such excellent resistance to oxidation resulted in the parabolic kinetics exhibiting two stages. This was attributed to the formation of a dense and continuous Al2O3 interface layer and a (Cr, Al)(2)O-3 outermost layer
The Study on Internal Flow Characteristics of Disc Filter under Different Working Condition
A disc filter (DF) is an important component in a micro irrigation system. However, it has a high head loss and low filtration efficiency, which can lead to the inoperability of micro irrigation systems. To improve the filtration ability and to decrease the pressure loss of the irrigation system, it is necessary to internalize the hydraulic characteristics of DFs. In this study, the filter bed of a DF was divided into three parts, i.e., upper, middle, and lower, which were wrapped with a transparent film. The wrapped part was completely blocked. The purpose was to analyze the hydraulic characteristics of different clogged conditions in three types of filters under four types of flows. In addition, we attempted to simulate the filter operation process with computational fluid dynamics, based on two aspects—a macroscopic model and a simplified model. The results showed that the patterns of head loss among all of the DFs was consistent, and the macroscopic model that treated filter bed as a porous medium could express the measured results. The macroscopic models observed that there was a circular flow in the DF, and the flow velocity presented a symmetrical distribution in a horizontal direction. The middle of the filter element appeared in a high-pressure area and demonstrated the highest head loss, which may be the main flow area of the DF, and the inner flow characteristics of the DF were consistent under different conditions. The simplified models showed that the main flow area is near the filter bed in the inner DF, and the flow is tangent to the filter bed between 45 and 90 degrees in a horizontal direction. The uneven distribution of velocity and pressure on the filter bed might be necessary factors to impact filter efficiency
Comprehensive Analysis Reveals the Difference in Volatile Oil between <i>Bupleurum marginatum</i> var. <i>stenophyllum</i> (Wolff) Shan et Y. Li and the Other Four Medicinal <i>Bupleurum</i> Species
Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources
Seismic Wave Field Anomaly Identification of Ultra-Deep Heterogeneous Fractured-Vuggy Reservoirs: A Case Study in Tarim Basin, China
Ultra-deep (7500–9000 m) Ordovician tight limestone heterogeneous fractured-vuggy reservoir is an important target of FuMan Oilfield in Tarim Basin. The strike-slip fault controlled reservoir is related to formation fracture and dissolution caused by geological stress. The seismic wave-field anomaly characteristics with different energy and irregular waveform are displayed in the seismic profile. Accurate identification of fractured-vuggy reservoirs wrapped in tight limestone is the direct scheme to improve production efficiency. Therefore, a new combination method flow of seismic wave-field anomaly recognition is proposed. In this process, the seismic data must be preprocessed initially, and on this basis, robust formation dip scanning is carried out. Secondly, the dip data is applied to the transverse smoothing filter to obtain the formation background data. Eventually, the seismic wave-field anomaly data is the residual between background data and original seismic data. This method has been applied in blocks with different structural characteristics and can effectively improve the resolution of strike-slip fault controlled reservoirs. Based on the results, the drilling success rate is increased to more than 95%, and the high-yield rate of oil tests is increased to 75% in 2021. Multiple applications indicate that the method is robust and can be popularized