45 research outputs found

    Causes and classification of EMD mode mixing

    Get PDF
    At present, the lack of insight into the problem of mode mixing in Empirical Mode Decomposition (EMD) hinders the development of solutions to the problem. Starting with the phenomenon that the EMD decomposition cannot be accomplished when the number of signal extrema is abnormal, the causes of mode mixing were investigated and the conclusion was reached that there are only two basic types of mode mixing. In light of this finding, the mechanisms of the three typical mode mixing solutions and their limitations were analyzed. It was found from the analysis process and results that the findings of this study regarding the causes and types of mode mixing were correct

    Crystal structure of ( Z

    Get PDF

    A calibration method of USBL installation error based on attitude determination

    Get PDF
    The Ultra-short baseline (USBL) positioning system has important application in the positioning of underwater vehicles. The installation error angle of the USBL positioning system has an important influence on the positioning accuracy of USBL system. The traditional calibration methods have limited estimation accuracy for installation error angles and have high route requirements. To solve the above problems, a calibration method of installation error angle based on attitude determination is proposed in this paper. When strapdown inertial navigation system (SINS) and USBL are fixed together in the application process, the installation error angle of USBL is fixed and unchanged. Then the calibration of installation error angle can be accomplished with the idea of attitude determination. The vector observation model based on the installation error angle matrix is established first. Observation vectors are obtained by the relative position of transponders in the USBL coordinate frame. The reference vector is calculated by position of transponder, position and attitude of SINS and lever arm between SINS and USBL. By constructing the observation vectors and the reference vectors, the proposed method can calibrate the installation error angle of SINS and USBL in real time. The advantages of the proposed method are that it has no specific requirements for the calibration route and can calibrate the installation error angle in real time with high accuracy. In order to verify the performance of the proposed algorithm, simulation experiment and field experiment are carried out in this paper. The results of simulation experiment and field experiment show that the proposed method can give the estimated installation error angle of USBL in real time, and the estimated result is the best among several methods. The proposed method can not only achieve the calibration of the installation error angle in circular trajectory, but also in straight trajectory

    Muscle and Heart Function Restoration in a Limb Girdle Muscular Dystrophy 2I (LGMD2I) Mouse Model by Systemic FKRP Gene Delivery

    Get PDF
    Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276IKI) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276IKI mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective

    Biological Characteristics of Severe Combined Immunodeficient Mice Produced by CRISPR/Cas9-Mediated Rag2 and IL2rg Mutation

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)9 is a novel and convenient gene editing system that can be used to construct genetically modified animals. Recombination activating gene 2 (Rag2) is a core component that is involved in the initiation of V(D)J recombination during T- and B-cells maturation. Separately, the interleukin-2 receptor gamma chain gene (IL2rg) encoded the protein-regulated activity of natural killer (NK) cells and shared common receptors of some cytokines. Rag2 and IL2rg mutations cause immune system disorders associated with T-, B-, and NK cell function and some cytokine activities. In the present study, 2 single-guide RNAs (sgRNAs) targeted on Rag2 and IL2rg genes were microinjected into the zygotes of BALB/c mice with Cas9 messenger RNA (mRNA) to create Rag2/IL2rg-/- double knockout mice, and the biological characteristics of the mutated mice were subsequently analyzed. The results showed that CRISPR/Cas9-induced indel mutation displaced the frameshift of Rag2 and IL2rg genes, resulting in a decrease in the number of T-, B-, and NK cells and the destruction of immune-related tissues like the thymus and spleen. Mycobacterium tuberculosis 85B antigen could not induce cellular and humoral immune response in mice. However, this aberrant immune activity compromised the growth of several tumor heterogenous grafts in the mutated mice, including orthotopic and subcutaneous transplantation tumors. Thus, Rag2/IL2rg-/- knockout mice possessed features of severe combined immunodeficiency (SCID), which is an ideal model for human xenograft

    Airborne Integrated Navigation System Based on SINS/GPS/TAN/EOAN

    No full text
    Considering the drawbacks that GPS signal is susceptible to obstacles and TAN becomes useless in some area when without any terrain data or with a featureless terrain field, to realize long-distance and high-precision navigation, a navigation system based on SINS/GPS/TAN/EOAN is presented. When GPS signal is available, GPS is used to correct errors of SINS; when GPS is unavailable, a terrain selection method based on the entropy weighted gray relational decision-making method is use to distinguish terrain into matchable areas and unmatchable areas; then, for the matchable areas, TAN is used to correct errors of SINS, for the unmatchable areas, EOAN is used to correct errors of SINS. The principles of SINS, GPS, TAN, and EOAN are analyzed, the mathematic models of SINS/GPS, SINS/TAN, and SINS/EOAN are constructed, and finally the federated Kalman filter is used to fuse navigation information. Simulation results show that the trajectory of SINS/GPS/TAN/EOAN is close to the ideal one in both matchable area or unmatchable area and whose navigation errors are obviously reduced, which is important for the realization of long-time and high-precision positioning

    A Fault-Tolerant Filtering Algorithm for SINS/DVL/MCP Integrated Navigation System

    No full text
    The Kalman filter (KF), which recursively generates a relatively optimal estimate of underlying system state based upon a series of observed measurements, has been widely used in integrated navigation system. Due to its dependence on the accuracy of system model and reliability of observation data, the precision of KF will degrade or even diverge, when using inaccurate model or trustless data set. In this paper, a fault-tolerant adaptive Kalman filter (FTAKF) algorithm for the integrated navigation system composed of a strapdown inertial navigation system (SINS), a Doppler velocity log (DVL), and a magnetic compass (MCP) is proposed. The evolutionary artificial neural networks (EANN) are used in self-learning and training of the intelligent data fusion algorithm. The proposed algorithm can significantly outperform the traditional KF in providing estimation continuously with higher accuracy and smoothing the KF outputs when observation data are inaccurate or unavailable for a short period. The experiments of the prototype verify the effectiveness of the proposed method

    Crystal structure of (Z)-2-hydroxy-N′-(4-oxo-1,3-thiazolidin-2-ylidene)benzohydrazide

    No full text
    In the title compound, C10H9N3O3S, the five-membered ring adopts a slightly twisted conformation about the Cm—S (m = methylene) bond. The dihedral angle between this ring and the benzene ring is 7.99 (9)°. A bifurcated intramolecular N—H...(O,S) hydrogen bond helps to establish the near planar conformation of the molecule. In the crystal, molecules are linked by N—H...O and O—H...O hydrogen bonds to generate (001) sheets

    A Robust INS/USBL/DVL Integrated Navigation Algorithm Using Graph Optimization

    No full text
    The Autonomous Underwater Vehicle (AUV) is usually equipped with multiple sensors, such as an inertial navigation system (INS), ultra-short baseline system (USBL), and Doppler velocity log (DVL), to achieve autonomous navigation. Multi-source information fusion is the key to realizing high-precision underwater navigation and positioning. To solve the problem, a fusion scheme based on factor graph optimization (FGO) is proposed. Due to multiple iterations and joint optimization of historical data, FGO could usually show a better performance than the traditional Kalman filter. In addition, considering that USBL and DVL are usually heavily influenced by the environment, outliers are often present. A robust integrated navigation algorithm based on a maximum correntropy criterion and FGO scheme is proposed. The proposed algorithm solves the problem of multi-sensor fusion and non-Gaussian noise. Numerical simulations and field tests demonstrate that the proposed FGO scheme shows a better performance and robustness than the traditional Kalman filter. Compared with the traditional Kalman filtering, the positioning accuracy is improved by 5.3%, 9.1%, and 5.1% in the east, north, and height directions. It can realize a more accurate navigation and positioning of underwater multi-sensors
    corecore