19 research outputs found

    Rice Grain Detection and Counting Method Based on TCLE–YOLO Model

    No full text
    Thousand-grain weight is the main parameter for accurately estimating rice yields, and it is an important indicator for variety breeding and cultivation management. The accurate detection and counting of rice grains is an important prerequisite for thousand-grain weight measurements. However, because rice grains are small targets with high overall similarity and different degrees of adhesion, there are still considerable challenges preventing the accurate detection and counting of rice grains during thousand-grain weight measurements. A deep learning model based on a transformer encoder and coordinate attention module was, therefore, designed for detecting and counting rice grains, and named TCLE-YOLO in which YOLOv5 was used as the backbone network. Specifically, to improve the feature representation of the model for small target regions, a coordinate attention (CA) module was introduced into the backbone module of YOLOv5. In addition, another detection head for small targets was designed based on a low-level, high-resolution feature map, and the transformer encoder was applied to the neck module to expand the receptive field of the network and enhance the extraction of key feature of detected targets. This enabled our additional detection head to be more sensitive to rice grains, especially heavily adhesive grains. Finally, EIoU loss was used to further improve accuracy. The experimental results show that, when applied to the self-built rice grain dataset, the precision, recall, and [email protected] of the TCLE–YOLO model were 99.20%, 99.10%, and 99.20%, respectively. Compared with several state-of-the-art models, the proposed TCLE–YOLO model achieves better detection performance. In summary, the rice grain detection method built in this study is suitable for rice grain recognition and counting, and it can provide guidance for accurate thousand-grain weight measurements and the effective evaluation of rice breeding

    Recent Advances of Solution-Processed Heterojunction Oxide Thin-Film Transistors

    No full text
    Thin-film transistors (TFTs) made of metal oxide semiconductors are now increasingly used in flat-panel displays. Metal oxides are mainly fabricated via vacuum-based technologies, but solution approaches are of great interest due to the advantages of low-cost and high-throughput manufacturing. Unfortunately, solution-processed oxide TFTs suffer from relatively poor electrical performance, hindering further development. Recent studies suggest that this issue could be solved by introducing a novel heterojunction strategy. This article reviews the recent advances in solution-processed heterojunction oxide TFTs, with a specific focus on the latest developments over the past five years. Two of the most prominent advantages of heterostructure oxide TFTs are discussed, namely electrical-property modulation and mobility enhancement by forming 2D electron gas. It is expected that this review will manifest the strong potential of solution-based heterojunction oxide TFTs towards high performance and large-scale electronics

    Fast Response Solar-Blind Photodetector with a Quasi-Zener Tunneling Effect Based on Amorphous In-Doped Ga2O3 Thin Films

    No full text
    A high-performance solar-blind photodetector with a metal–semiconductor–metal structure was fabricated based on amorphous In-doped Ga2O3 thin films prepared at room temperature by radio frequency magnetron sputtering. The photodetector shows a high responsivity (18.06 A/W) at 235 nm with a fast rise time (4.9 μs) and a rapid decay time (230 μs). The detection range was broadened compared with an individual Ga2O3 photodetector because of In doping. In addition, the uneven In distribution at different areas in the film results in different resistances, which causes a quasi-Zener tunneling internal gain mechanism. The quasi-Zener tunneling internal gain mechanism has a positive impact on the fast response speed and high responsivity

    Great enhancement effect of 20-40 nm Ag NPs on solar-blind UV response of the mixed-phase MgZnO detector

    No full text
    High-performance solar-blind UV detector with high response and fast speed is needed in multiple types of areas, which is hard to achieve in one device with a simple structure and device fabrication process. Here, the effects of Ag nanoparticles (NPs) with different sizes on UV response characteristics of the device are studied, the Ag NPs with different sizes that are made from a simple vacuum anneal method. Ag NPs with different sizes could modulate the peak response position of the mixed-phase MgZnO detector from near UV range (350 nm) to deep UV range (235 nm), and the enhancement effect of the Ag NPs on the UV response differs much with the crystal structure and the basic UV response of the MgZnO thin film. When high density 20-40 nm Ag NPs is induced, the deep UV (235 nm) response of the mixed-phase MgZnO detector is increased by 226 times, the I uv/I dark ratio of the modified device is increased by 17.5 times. The slight enhancement in UV light intensity from 20 to 40 nm Ag NPs induces multiple tunnel breakdown phenomena within the mixed-phase MgZnO thin film, which is the main reason for the abnormal great enhancement effect on deep UV response of the device, so the recovery speed of the modified device is not influenced. Therefore, Ag NPs with different sizes could effectively modulate the UV response peak position of mixed-phase MgZnO thin films, and the introduction of Ag NPs with high density and small size is a simple way to greatly increase the sensitivity of the mixed-phase MgZnO detector at deep UV light without decreasing the device speed.Published versionThis work was supported by the National Natural Science Foundation of China under grant nos. (51872187, 11774241, 51371120, 51302174, 61704111, 61504083, and 61574051), the Natural Science Foundation of Guangdong Province (2016A030313060 and 2017A030310524), the Public Welfare Capacity Building in Guangdong Province (2015A010103016), the Project of Department of Education of Guangdong Province (2014KTSCX110), the Science and Technology Research Items of Shenzhen (JCYJ20170818144255777, JCYJ20170818144212483, JCYJ20180507182248925, JCYJ201602261920, JCYJ20170818143417082, and JCYJ20160226192033020), the Science and Technology Foundation of Shenzhen, and the National Key Research and Development Program of China (2017YFB0404100 and 2017YFB0403000)

    High Photoresponse Black Phosphorus TFTs Capping with Transparent Hexagonal Boron Nitride

    No full text
    Black phosphorus (BP), a single elemental two-dimensional (2D) material with a sizable band gap, meets several critical material requirements in the development of future nanoelectronic applications. This work reports the ambipolar characteristics of few-layer BP, induced using 2D transparent hexagonal boron nitride (h-BN) capping. The 2D h-BN capping have several advantages over conventional Al2O3 capping in flexible and transparent 2D device applications. The h-BN capping technique was used to achieve an electron mobility in the BP devices of 73 cm2V−1s−1, thereby demonstrating n-type behavior. The ambipolar BP devices exhibited ultrafast photodetector behavior with a very high photoresponsivity of 1980 mA/W over the ultraviolet (UV), visible, and infrared (IR) spectral ranges. The h-BN capping process offers a feasible approach to fabricating n-type behavior BP semiconductors and high photoresponse BP photodetectors

    High-Performance Thin-Film Transistors with ZnO:H/ZnO Double Active Layers Fabricated at Room Temperature

    No full text
    H doping can enhance the performance of ZnO thin-film transistors (TFTs) to a certain extent, and the design of double active layers is an effective way to further improve a device’s performance. However, there are few studies on the combination of these two strategies. We fabricated TFTs with ZnO:H (4 nm)/ZnO (20 nm) double active layers by magnetron sputtering at room temperature, and studied the effect of the hydrogen flow ratio on the devices’ performance. ZnO:H/ZnO-TFT has the best overall performance when H2/(Ar + H2) = 0.13% with a mobility of 12.10 cm2/Vs, an on/off current ratio of 2.32 × 107, a subthreshold swing of 0.67 V/Dec, and a threshold voltage of 1.68 V, which is significantly better than the performance of single active layer ZnO:H-TFTs. This exhibits that the transport mechanism of carriers in double active layer devices is more complicated. On one hand, increasing the hydrogen flow ratio can more effectively suppress the oxygen-related defect states, thus reducing the carrier scattering and increasing the carrier concentration. On the other hand, the energy band analysis shows that electrons accumulate at the interface of the ZnO layer close to the ZnO:H layer, providing an additional path for carrier transport. Our research exhibits that the combination of a simple hydrogen doping process and double active layer construction can achieve the fabrication of high-performance ZnO-based TFTs, and that the whole room temperature process also provides important reference value for the subsequent development of flexible devices

    Aqueous Solution-Processed Nanometer-Thin Crystalline Indium Ytterbium Oxide Thin-Film Transistors

    No full text
    We demonstrate the growth of ultra-thin (~5 nm) indium ytterbium oxide (In-Yb-O) thin film using a simple vacuum-free aqueous solution approach for the first time. The influences of Yb addition on the microstructural, chemical, optical, and electrical properties of In2O3 are well investigated. The analyses indicate that Yb dopant could suppress oxygen vacancy defects effectively owing to the lower standard electrode potential, lower electronegativity, and stronger metal-oxide bond strength than that of In. The optimized In-Yb-O thin-film transistors (TFTs) exhibit excellent electrical performance (mobility of 8 cm2/Vs and on/off ratio of ~108) and enhanced stability. The triumph of In-Yb-O TFTs is owing to the high quality In2O3 matrix, the remarkable suppressor of Yb, and the nanometer-thin and atomically smooth nature (RMS: ~0.26 nm) of channel layer. Therefore, the eco-friendly water-induced ultra-thin In-Yb-O channel provides an excellent opportunity for future large-scale and cost-effective electronic applications

    Aqueous Solution-Processed Nanometer-Thin Crystalline Indium Ytterbium Oxide Thin-Film Transistors

    No full text
    We demonstrate the growth of ultra-thin (~5 nm) indium ytterbium oxide (In-Yb-O) thin film using a simple vacuum-free aqueous solution approach for the first time. The influences of Yb addition on the microstructural, chemical, optical, and electrical properties of In2O3 are well investigated. The analyses indicate that Yb dopant could suppress oxygen vacancy defects effectively owing to the lower standard electrode potential, lower electronegativity, and stronger metal-oxide bond strength than that of In. The optimized In-Yb-O thin-film transistors (TFTs) exhibit excellent electrical performance (mobility of 8 cm2/Vs and on/off ratio of ~108) and enhanced stability. The triumph of In-Yb-O TFTs is owing to the high quality In2O3 matrix, the remarkable suppressor of Yb, and the nanometer-thin and atomically smooth nature (RMS: ~0.26 nm) of channel layer. Therefore, the eco-friendly water-induced ultra-thin In-Yb-O channel provides an excellent opportunity for future large-scale and cost-effective electronic applications

    Water-Processed Ultrathin Crystalline Indium-Boron-Oxide Channel for High-Performance Thin-Film Transistor Applications

    No full text
    Thin-film transistors (TFTs) made of solution-processable transparent metal oxide semiconductors show great potential for use in emerging large-scale optoelectronics. However, current solution-processed metal oxide TFTs still suffer from relatively poor device performance, hindering their further advancement. In this work, we create a novel ultrathin crystalline indium-boron-oxide (In-B-O) channel layer for high-performance TFTs. We show that high-quality ultrathin (~10 nm) crystalline In-B-O with an atomically smooth nature (RMS: ~0.15 nm) could be grown from an aqueous solution via facile one-step spin-coating. The impacts of B doping on the physical, chemical and electrical properties of the In2O3 film are systematically investigated. The results show that B has large metal-oxide bond dissociation energy and high Lewis acid strength, which can suppress oxygen vacancy-/hydroxyl-related defects and alleviate dopant-induced carrier scattering, resulting in electrical performance improvement. The optimized In-B-O (10% B) TFTs based on SiO2/Si substrate demonstrate a mobility of ~8 cm2/(V s), an on/off current ratio of ~106 and a subthreshold swing of 0.86 V/dec. Furthermore, by introducing the water-processed high-K ZrO2 dielectric, the fully aqueous solution-grown In-B-O/ZrO2 TFTs exhibit excellent device performance, with a mobility of ~11 cm2/(V s), an on/off current of ~105, a subthreshold swing of 0.19 V/dec, a low operating voltage of 5 V and superior bias stress stability. Our research opens up new avenues for low-cost, large-area green oxide electronic devices with superior performance
    corecore