46 research outputs found

    Charge Transport Scalings in Turbulent Electroconvection

    Get PDF
    We describe a local-power law scaling theory for the mean dimensionless electric current NuNu in turbulent electroconvection. The experimental system consists of a weakly conducting, submicron thick liquid crystal film supported in the annulus between concentric circular electrodes. It is driven into electroconvection by an applied voltage between its inner and outer edges. At sufficiently large voltage differences, the flow is unsteady and electric charge is turbulently transported between the electrodes. Our theoretical development, which closely parallels the Grossmann-Lohse model for turbulent thermal convection, predicts the local-power law NuF(Γ)RγPδNu \sim F(\Gamma) {\cal R}^{\gamma} {\cal P}^{\delta}. R{\cal R} and P{\cal P} are dimensionless numbers that are similar to the Rayleigh and Prandtl numbers of thermal convection, respectively. The dimensionless function F(Γ)F(\Gamma), which is specified by the model, describes the dependence of NuNu on the aspect ratio Γ\Gamma. We find that measurements of NuNu are consistent with the theoretical model.Comment: 12 pages, 7 figures, Submitted to Phys. Rev. E. See also http://www.physics.utoronto.ca/nonlinea

    How micropatterns and air pressure affect splashing on surfaces

    Get PDF
    We experimentally investigate the splashing mechanism of a millimeter-sized ethanol drop impinging on a structured solid surface, comprised of micro-pillars, through side-view and top-view high speed imaging. By increasing the impact velocity we can tune the impact outcome from a gentle deposition to a violent splash, at which tiny droplets are emitted as the liquid sheet spreads laterally. We measure the splashing threshold for different micropatterns and find that the arrangement of the pillars significantly affects the splashing outcome. In particular, directional splashing in direction in which air flow through pattern is possible. Our top-view observations of impact dynamics reveal that an trapped air is responsible for the splashing. Indeed by lowering the pressure of the surrounding air we show that we can suppress the splashing in the explored parameter regime.Comment: 7 pages, 9 figure

    Quantifying effective slip length over micropatterned hydrophobic surfaces

    Get PDF
    We employ micro-particle image velocimetry (μ\mu-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.Comment: 8 page

    Electrolytically Generated Nanobubbles on HOPG Surfaces

    Get PDF
    Electrolysis of water is employed to produce surface nanobubbles on highly orientated pyrolytic graphite (HOPG) surfaces. Hydrogen (oxygen) nanobubbles are formed when the HOPG surface acts as negative (positive) electrode. Coverage and volume of the nanobubbles enhance with increasing voltage. The yield of hydrogen nanobubbles is much larger than the yield of oxygen nanobubbles. The growth of the individual nanobubbles during the electrolysis process is recorded in time with the help of AFM measurements and correlated with the total current. Both the size of the individual nanobubbles and the total current saturate after typical 1 minute; then the nanobubbles are in a dynamic equilibrium, meaning that they do not further grow, in spite of ongoing gas production and nonzero current. The surface area of nanobubbles shows a good correlation with the nanobubble volume growth rate, suggesting that either the electrolytic gas emerges directly at the nanobubbles' surface, or it emerges at the electrode's surface and then diffuses through the nanobubbles' surface. Moreover, the experiments reveal that the time constants of the current and the aspect ratio of nanobubbles are the same under all conditions. Replacement of pure water by water containing a small amount of sodium chloride (0.01 M) allows for larger currents, but qualitatively gives the same results.Comment: Langmuir, in pres

    Evaporation-triggered Wetting Transition for Water Droplets upon Hydrophobic Microstructures

    Get PDF
    When placed on rough hydrophobic surfaces, water droplets of diameter larger than a few millimeters can easily form pearls, as they are in the Cassie-Baxter state with air pockets trapped underneath the droplet. Intriguingly, a natural evaporating process can drive such a Fakir drop into a completely wetting (Wenzel) state. Our microscopic observations with simultaneous side and bottom views of evaporating droplets upon transparent hydrophobic microstructures elucidate the water-filling dynamics and the mechanism of this evaporation-triggered transition. For the present material the wetting transition occurs when the water droplet size decreases to a few hundreds of micrometers in radius. We present a general global energy argument which estimates the interfacial energies depending on the drop size and can account for the critical radius for the transition.Comment: 4 pages, 6 figure

    Localized states in sheared electroconvection

    Get PDF
    Electroconvection in a thin, sheared fluid film displays a rich sequence of bifurcations between different flow states as the driving voltage is increased. We present a numerical study of an annular film in which a radial potential difference acts on induced surface charges to drive convection. The film is also sheared by independently rotating the inner edge of the annulus. This simulation models laboratory experiments on electroconvection in sheared smectic liquid crystal films. The applied shear competes with the electrical forces, resulting in oscillatory and strongly subcritical bifurcations between localized vortex states close to onset. At higher forcing, the flow becomes chaotic via a Ruelle-Takens-Newhouse scenario. The simulation allows flow visualization not available in the physical experiments, and sheds light on previously observed transitions in the current-voltage characteristics of electroconvecting smectic films.Comment: To be published in EuroPhysics Letters, 6 pages, 6 figures: final versio

    The Zipping-wetting Dynamics at the Breakdown of Superhydrophobicity

    Get PDF
    Under some conditions water droplets can completely wet micro-structured superhydrophobic surfaces. The dynamics of this rapid process is investigated with ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or – more interestingly – in a stepwise manner for a smaller periodicity of the microstructure. The latter phenomenon leads to a growing square-shaped wetted area: liquid laterally enters a new row on a slow timescale of milliseconds, once it happens the row then fills itself towards the sides in microseconds (“zipping”)
    corecore