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Localized states in sheared electroconvection
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Abstract – Electroconvection in a thin, sheared fluid film displays a rich sequence of bifurcations
between different flow states as the driving voltage is increased. We present a numerical study
of an annular film in which a radial potential difference acts on induced surface charges to drive
convection. The film is also sheared by independently rotating the inner edge of the annulus. This
simulation models laboratory experiments on electroconvection in sheared smectic liquid crystal
films. The applied shear competes with the electrical forces, resulting in oscillatory and strongly
subcritical bifurcations between localized vortex states close to onset. At higher forcing, the flow
becomes chaotic via a Ruelle-Takens-Newhouse scenario. The simulation allows flow visualization
not available in the physical experiments, and sheds light on previously observed transitions in
the current-voltage characteristics of electroconvecting smectic films.
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Driven, dissipative nonlinear systems sometimes
exhibit spatially localized structures which are analogous
to solitons [1]. Examples are found in systems as diverse
as vegetation patterns [2], vibrated granular media [3]
and ferrofluids [4]. Such states can also arise in fluid-
mechanical settings such as binary fluid convection [5,6]
(where they have been called “convectons” [7]), in
electroconvecting nematic liquid crystals [8], and in very
general model equations [9,10]. In this letter, we describe
a new and unexpected type of localized patterns: solitary
vortex states in two-dimensional, sheared electrocon-
vection. We show numerically that these states can be
extremely localized, consisting of only a single, isolated
vortex surrounded by a uniform background state. The
presence of localized states in this system is surprizing
and interesting because it results from the interaction of
a circular Couette shear with two-dimensional convection
in an especially simple, highly symmetric geometry.
Theses states can be experimentally realized using

thin free-standing films of smectic liquid crystals [11–16].
Here, direct numerical simulation allows us to study the
spatial structure of the full velocity, charge and potential
fields [16]. This approach compliments existing theory
[12,16] and experiments [11–15] on this system, which
mainly consisted in observations of the total current
through the thin film, without flow visualization. The
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simulation reveals localized states in the form of vortices
which travel in the direction of the applied shear. These
are preceded by lower-amplitude, extended traveling
and oscillatory vortex states. At sufficiently high levels
of electrical forcing, the flow becomes chaotic via a
Ruelle-Takens-Newhouse scenario [17]. Our results serve
to strongly motivate new experiments and theory to
elucidate the dynamics of sheared 2D convection. More
generally, this system with naturally periodic boundary
conditions, and for which forcing and shear are inde-
pendently controllable, will be an interesting place to
examine recent ideas on higher-dimensional invariant
manifolds on the way to turbulence [18,19].
Our numerical study simulates a laboratory experiment

shown schematically in fig. 1. The system consists of
a submicron-thick liquid crystal film freely suspended
between concentric circular electrodes. The weakly
conducting film is driven to convect when a sufficiently
large electric potential is imposed across it. The inner
edge of the annular film is held at absolute potential V
with respect to infinity, while the outer edge is held at
zero potential. In addition to the control parameter asso-
ciated with this electrical driving force, it is possible to
independently rotate the inner electrode, which imposes
an azimuthal Couette shear on the film. The experimental
signature of convection consists of measurements of the
total current through the film, which is increased by
convective flow.
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Fig. 1: (Color online) Schematic of the sheared 2D annular film.

The film develops a surface charge configuration which
is unstable to the applied voltage. This instability is closely
analogous to that of Rayleigh-Bénard convection, in which
an inverted density distribution is unstable to buoyancy
forces. As in Rayleigh-Bénard convection, there are two
important dimensionless parameters. The Rayleigh-like
numberR describes the ratio of the electrical forcing to the
viscous and electrical dissipation; this serves as the main
control parameter. The Prandtl-like number P is the ratio
of charge relaxation time τq to viscous relaxation time τv.
The annular geometry of the film is characterized by the
radius ratio α. These parameters are given by [12]

R≡
ε20V

2

ση
, P ≡

ε0η

ρσd
and α≡

ri
ro
, (1)

where ρ, η and σ are the 2D mass density, shear viscosity
and electrical conductivity, respectively. The width of
the film is d= ro− ri, and ε0 is the permittivity of free
space.
Rotation of the inner electrode introduces a circular

Couette shear to the base state below the onset of
convection. The strength of the shear is characterized by
a dimensionless shear Reynolds number

Re= ρdωri/η, (2)

where ω is the angular rotation frequency of the inner
electrode. The basic equations, given in detail in refs. [12]
and [16], are nondimensionalized using the film width
d as the unit of length and the charge relaxation time
τq = ε0d/σ as the unit of time. Recall that σ is the 2D
conductivity. In these units, the dimensionless rotation
rate of the inner electrode is Ω= ωτq.
The dimensionless electrical current through the film is

described by the Nusselt number, Nu= I/I0, where I0 is
the fraction of the current contributed by pure conduction
at the same voltage. In a convecting film, Nu> 1. The
quiescent film undergoes a bifurcation from conduction
to convection when a voltage larger than a critical value
Vc is applied, corresponding to a critical value Rc, which
in general depends on α, P and Re. Typically, Rc ∼ 100.
Just above onset, the flow is characterized by a number
of counter-rotating vortices arranged around the annulus,
filling its entire circumference. Under shear, the vortex
pattern rotates, traveling in the same sense as the inner
electrode.

We generalize our previous numerical scheme [16] to
encompass the case of nonzero shear. Denoting the quan-
tities in the base state below the onset of convection by
a superscript zero, the only new nonzero quantity that
appears in the perturbed equations (eqs. (18) and (19) in
ref. [16]) is the radial derivative of the base state stream
function φ(0) given by

∂φ(0)

∂r
=
α2Ω

1−α2

(

r−
1

r(1−α)2

)

, (3)

where r is the dimensionless radial coordinate in units of d.
With this change, the numerical treatment described in
ref. [16] can be carried out for the sheared case.
The direct numerical simulations used a pseudo-

spectral scheme, based on the Fourier Galerkin method
in the azimuthal direction and the Chebyshev collocation
method in the radial direction [20]. The governing equa-
tions, given in full in ref. [16], are the 2D Navier-Stokes
equation, the continuity equations for mass and charge,
and one Maxwell equation for the nonlocal, coupled
relationship between the charge and electric potential on
the film. We used the streamfunction and the vorticity as
primitive variables. These were computed in the annular
geometry 0! θ< 2π and α/(1−α)! r! 1/(1−α). The
boundary conditions are periodic in the θ̂ direction, while
a no-slip boundary condition holds at the edges of the
annulus. To make sure the computations are well resolved,
we employed up to 32 Fourier modes, up to 40 radial
Chebyshev collocation points and a variety of time-step
sizes. We verified the simulation results using different
expansion orders and different time-step sizes [16].
Unlike in the case of 3D Taylor-Couette flow, here the

2D applied shear is itself stable and always stabilizes the
conduction state, suppressing the onset of electroconvec-
tion. At the primary bifurcation at the onset of convection,
the critical azimuthal Fourier mode with mode number
mc becomes unstable. We denote Rc(Re= 0) =R0c and
mc(Re= 0) =m0c . The simulation results for R

0
c and m

0
c

show excellent agreement with previous linear stability
analyses [12,16]. Under applied shear, we find Rc >R0c
and mc !m0c . This suppression of convection is described
by a reduced critical control parameter, ε̃= (Rc/R0c)− 1.
This reduced quantity can be extracted from experimen-
tal current data with essentially no adjustable parame-
ters, and calculated using linear stability analysis [12]. The
numerical simulation also produces values of the reduced
Nusselt number n=Nu− 1 that can be directly compared
to experimental data in the nonlinear regime. We discuss
such comparisons below.
In addition to the integrated quantities like Nu, the

simulation also provides directly the full vorticity, stream
function, surface charge, and electric potential fields.
These basic fields are not directly accessible to experi-
ment, except by using rather invasive flow visualization
techniques which tend to unduly perturb the system [11].
Thus, we can use the simulation to provide important new
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insights into the flow dynamics as R and Re vary, and
our results shed new light on some previously unresolved
experimental observations, while also making interesting
new predictions.
The simulations clearly show that the vicinity of the

onset of convection under shear is much more complex
than previously suspected, with new low-amplitude and
oscillatory states predicted. The simulations show that
all primary bifurcations are continuous, or “supercritical”,
even under shear. This is in contrast with previous experi-
mental studies [13,14] which were interpreted to show that
the bifurcation became hysteretic and discontinuous, i.e.
“subcritical”, under a sufficiently large shear. This discrep-
ancy may be traced to the fact that the excess current due
to convection just above onset is very small, and can just
barely be distinguished from the background conduction
current due to noise and drift effects.
Figure 2a shows raw experimental current-voltage data

from fig. 2 in ref. [14] and the corresponding measured
dimensionless quantities Nu− 1 vs. R. Figure 2c shows
the results of a full numerical simulation at the same
dimensionless parameters as the previous figure. The inte-
grated quantity Nu− 1 found numerically is in reasonable
agreement with the experimental data. However, an exam-
ination of the flow pattern reveals several new features
which cannot be deduced from the experimental data
alone.
Convection begins at a lower voltage than previously

thought, and the first state encountered has a very low
amplitude, corresponding to a small value of Nu− 1.
In the analysis of experimental data like that shown in
fig. 2a, the critical voltage Vc was misidentified to be near
the jump at V fc instead of somewhere close to V

∗

c . The
numerical simulation shows that there is a sudden large
increase in the current near V fc which is associated with a
sharp change in the mode structure, while the true onset
of convection is lower, near V ∗c . Just a trace of the low
amplitude signal may be seen in the measured Nu− 1
shown in fig. 2b. In some unpublished data [21], the effect
was more pronounced than in fig. 2b, and was suspected
to be due to low amplitude supercritical states, though the
matter could not be experimentally resolved at that time.
The misidentification of Vc means that the measured

suppression of the onset on convection, represented by the
experimental value of ε̃, must be systematically too large.
The difference in V ∗c and V

f
c is typically of the order of

the width of the hysteresis loop which is about 10–30%
of Vc, depending on other parameters. The systematic
overestimate of the experimental suppression may be seen
in fig. 7 of ref. [13], where in the experimental data lie
above the theoretical suppression from linear stability
calculations.
As R gradually increases beyond the steady sheared

convection regime, the simulation shows that a Hopf
bifurcation sets in leading to a periodic motion in a
small R range, as shown in fig. 2c. In addition to
the usual rotation of the vortex pattern, the amplitude

Vc
*

Vc
 f

Fig. 2: (Color online) (a) Experimental raw current-voltage
data from ref. [14] for α= 0.56, P = 76, and Re= 0.124.
The open (filled) triangles are for increasing (decreasing)
voltage. (b) The corresponding measured dimensionless convec-
tive current, Nu− 1, vs. dimensionless control parameter
ε= (V/Vc)

2− 1, extracted from the data in (a). (c) Simulation
results for Nu− 1 for the same parameters as in the previous
experimental figure. The film undergoes a sequence of bifur-
cations as R is slowly increased and then decreased ("). The
sequence of flow regimes are conduction (∗), steady rotating
convection ($), and oscillatory rotating convection (◦), with
the vertical bars showing the amplitude of oscillation. A large
hysteretic bifurcation is located at the jump in the dimen-
sionless current that signals changes in the structure of the
azimuthal Fourier modes.

becomes oscillatory in time, while generally still filling
the circumference. The steady sheared convection state
does not show a time dependence in Nu− 1 until these
amplitude oscillations set in.
Oscillatory motion under a moderate shear correspond-

ing to Re= 0.124 begins at about 1.18×Rc. Figure 3a
shows numerical time-series data of the oscillating
convective current at R= 371.3. After ∼ 10τq, we find a
one-frequency limit cycle is established. The correspond-
ing phase space reconstruction of this cycle is shown on
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Fig. 3: (Color online) Numerical data for the oscillatory
convective current Nu− 1 for α= 0.56, P = 75.8, and Re=
0.124: (a) the time-series data for R= 371.3, together with
the corresponding phase space trajectory, reconstructed using
a time-delay method; (b) the fundamental frequencies (•) and
the oscillation amplitudes (!) of Nu− 1 as a function of R.

the right of fig. 3a, using the time-delay method with
a sufficiently long time series of Nu− 1. The oscillatory
regime spans the range 365<R< 388. Figure 3b shows
the oscillation frequencies and amplitudes over this range.
The oscillation frequency for R= 371.3 is 0.40 in units
of τ−1q . Simultaneously, the rate of rotation of the vortex
pattern itself, which is carried around by the imposed
shear, measured in the rangeR= 390–394, was 2.36 rad/τq
counterclockwise, corresponding to a physical frequency
of 0.38 τ−1q . Thus, the frequencies of the amplitude oscil-
lation and of the overall pattern rotation are comparable
in the narrow window of oscillatory convection.
The oscillatory convection regime is not always present

under shear, however. We did not observe oscillations for
very small shears, such as Re= 0.01 and Re= 0.06, for
similar supercritical values of R.
Previous laboratory experiments [13,14] measured the

time averaged total current passing through the film,
producing data like that shown in fig. 2a. A re-examination
of the time series that were averaged over, close to the
sudden current increase that signals the end of the oscil-
latory regime, failed to unambiguously identify an oscilla-
tory signal in the experimentally measured current. The
time series were not long enough to capture many periods
of the oscillation, if it was present. The narrow window
of voltages over which the oscillatory regime would exist
was not sampled sufficiently. New experiments, optimized
for higher bandwidth and longer data acquisition of the
current-voltage characteristics close to onset would be
required to detect the oscillatory regime, supposing that
it occurs as predicted by the simulation.
The laboratory measurements unambiguously show a

sequence of large subcritical bifurcations as a function of

Fig. 4: (Color online) The spatial patterns of the electric
potential perturbation, (i.e. the total potential minus the
conduction profile) at R= 388.0 and Re= 0.124, as in fig. 2c.
(a) Initially, there are six oscillatory traveling vortex pairs.
(b) After 30τq, there are two non-oscillatory traveling vortices.
(c) Time series of the Fourier amplitudes of the perturbed
electric potential at midradius, showing the mode evolution
during the transition.

R, for fixed Re. As Re is increased, these bifurcations
evolve and proliferate in a regular way [14]. Based on
measurements of the current, and some crude flow visu-
alization, it was supposed that these were jump transi-
tions between homogeneous azimuthal Fourier modes of
the formm→m± 1. The size of the changes in the current
were consistent with this supposition. Our numerical simu-
lation of the same situation in which the flow patterns are
revealed tells a different, more interesting story, however.
As figs. 4a and b show, the large subcritical transition

shown in fig. 2c takes the traveling, oscillatory vortex
pattern to a strongly localized state consisting of just
two isolated vortices. These vortices travel azimuthally
in the direction of the shear, but are otherwise steady.
Figure 4b shows the perturbed electric potential associ-
ated with the localized vortices. The fluid flow within
the vortices resembles that shown in fig. 5d, which shows
the perturbed stream function of a similar two vortex state
under a larger shear. Figure 4c shows the evolution of the
mode amplitudes during the transition to the localized
state. m= 2 and several harmonics combine to make up
the localized vortices, indicating the broadband nature of
the flow, which clearly requires strong mode coupling to
remain coherent.
Upon reversing direction by decreasingR in the range of

342<R< 388, the convection exhibits hysteresis as shown
in fig. 2c. Time series data of the kinetic energy for decreas-
ing R shows over-damped oscillations. While decreasing
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Fig. 5: (Color online) Numerical results for the dimensionless
convective current, Nu− 1, at α= 0.56, P = 75.8 and Re=
0.231. In comparison with fig. 2c for which Re= 0.124, this
larger shear produces more bifurcations over a similar range
of the dimensionless control parameter. The spatial patterns
of the perturbed stream function shown below are marked by
letters in the upper plot. (a) Oscillatory convection at R= 600
at t= 30τq. (b) Undulating convection at a mode-changing
bifurcation atR= 650 at t= 30τq. (c) Oscillatory and localized
convection, consisting of a single vortex at R= 800 at t= 20τq.
(d) Non-oscillatory, traveling localized convection at R= 900
at t= 20τq.

R from 500 down to 340, the originally dominant Fourier
modes at m= 2 and m= 4 decay to essentially zero and
m= 6 decays to a steady value. On decreasing R, the
Nu− 1 curve shown in fig. 2c reaches what is presum-
ably a saddle-node bifurcation endpoint, where it rejoins
the steady, non-oscillatory, m= 6 convection regime just
above the onset at Rc.
Figure 5 shows a simulation which captures two succes-

sive subcritical bifurcations under a larger shear. In this
case, the lower bifurcation results in a state consisting of
a single traveling vortex. The subsequent transition leads
to a two vortex state, as before. Several saddle nodes and
new oscillatory localized states are seen. These successive
transitions in the simulation resemble the tree of bifurca-
tions observed experimentally [14].
Thus, we find numerically that the mode structure

changes near the strongly subcritical secondary bifurca-
tions are much more complex than was apparent from the
IV data alone. In particular, the modes may be oscillatory,
and mode transitions can span more thanm→m± 1. The

traveling localized patterns above the bifurcation is not
well characterized as having a single mode, and during
the transition numerous coupled modes become active.
The localized states also carry orders of magnitude more
current than the traveling and oscillatory states below the
bifurcation —so much so that the large subcritical jump
was misidentified as the primary bifurcation in previous
experimental studies [13,14].
Localized states in other systems [1] have sometimes

been interpreted to be a consequence of heteroclinic
cycles in the spatial coordinate [22] connecting a uniform
background state to a spatially modulated state and back
again. Such states typically are stationary and occur in
1D systems with a reflection symmetry. Here, such a
symmetry is inherently strongly broken by the handedness
of the applied shear. In contrast, we find localized single
vortices with only one sign of vorticity; they rotate
internally in the same sense as the inner electrode, and
travel azimuthally in the same direction. The traveling
aspect of the pattern may not be crucial, however, because
it could be transformed away by passing to an appropriate
rotating reference frame in which the localized state is
stationary. The dynamics in the 2D annulus is in fact
unaffected by overall rotations (see ref. [12] for a detailed
explanation of this rather counterintuitive fact).
In the heteroclinic cycle model, the localized state can

be thought of as two pinned fronts connecting states near
the Maxwell point in a region of bistability between the
two states. The Maxwell point is the parameter value
at which the “energy”, or Lyapounov functional, of the
two states is equal. Near this point, the so-call snaking
region contains localized solutions with various numbers
of internal spatial modulations. This picture has been
applied to the case of localized “convectons” in binary
fluid convection for example [6,7], where the concentration
and temperature fields are respectively stabilizing and
destabilizing, somewhat analogous to shear and applied
electric potential in our case. It is far from clear, however,
whether this snaking picture can be relevant to the present
case. We have not yet observed localized states consisting
of multiple counter-rotating vortices, only isolated vortices
of a single handedness surrounded by regions of very
weak reverse vorticity. Also, the range of existence of the
localized states appears to span a range of parameters
too wide to be confined to a narrow snaking region.
They emerge not from a uniform state, but rather from
oscillatory low-amplitude precursor patterns. Of course,
neither the experiment, nor the time-stepping simulation,
give us full access to all the solutions, stable and unstable,
that may exist in the vicinity of the bifurcation. It is also
worth noting that while the simulation reproduces the
experimentally measured currents quite well, the localized
states have not been observed directly using the limited
flow visualization available.
For larger Re and R, we observe the onset of chaotic

flow, which followed the Ruelle-Takens-Newhouse scenario
for the route to chaos [17]. Figure 6 shows the time domain
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Fig. 6: (Color online) Projections of the system attractor
of Nu(t)− 1 using a time-delayed reconstruction method in
sheared convection with α= 0.47, P = 16.3 and a large Re=
0.8. (a) 2-frequency quasiperiodic flow (2-torus) at R= 639.3.
(b) 3-frequency quasiperiodic flow (3-torus) at R= 673.4.
These are spatially localized states which exhibit multifre-
quency oscillations in the time domain as the driving force
is increased toward to a chaotic state.

of Nu− 1 for α= 0.47, P = 16.3, and the large shear
Re= 0.8. With increasing R, we first find steady convec-
tion, then a periodic state (a period-1 limit cycle),
as in fig. 3, followed by a two-frequency quasiperiodic
flow (a 2-torus), a three-frequency quasi-periodic flow
(a 3-torus), and finally chaos. Figure 6 illustrates the
attractors of those states using a time-delay recon-
struction [23] from time-series of Nu− 1. We first find
a 1-frequency periodic motion at R= 485.6 with a
basic frequency of f1 ∼ 0.60τ−1q . Subsequently, the basic
frequency of the periodic state changes slightly in the
range 0.40–0.50τ−1q as R increases. The 2-torus motion
at R= 639.3 has fundamental frequencies f1 = 0.70τ−1q
and f2 = 0.80τ−1q . In space, the flow is localized to a
single traveling vortex like that shown in fig. 5c. The
3-torus state at R= 673.4 is also localized and has the
basic frequencies f = 0.31, 0.69, and 1.31, in units of τ−1q .
Finally, at higher R= 1190, chaotic motion is observed,
yet the traveling state remains localized in space. The
complex time dependence comes from small blobs of
charge which are chaotically emitted from the electrodes
near the vortex.
In conclusion, direct numerical simulation of sheared

electroconvection provides an interesting new window on
localized states, bifurcations and chaos in 2D fluid flows.
It nicely complements previous experimental studies,
which were mainly limited to current measurements, by
allowing visualization of the basic fields. The simulations
revealed an unexpected low amplitude state just above
the onset of convection, and oscillatory states which have
not yet been systematically investigated in experiment. A
strongly subcritical bifurcation makes transitions between
these oscillatory states to novel new states with localized
traveling vortices. These carry much more current. Their
localization is presumably due to some sort of mode inter-
action, but the exact nature of their stability is unknown.
New, more sensitive experiments with better visualization
will be necessary in order to study these states experimen-
tally. Under stronger electrical forcing and higher rates of
shear, we also observed a transition to localized chaotic

convection via a Ruelle-Takens-Newhouse scenario. The
relatively simple geometry of this system makes it an
ideal place to explore ideas about localized, chaotic and
turbulent states both theoretically and experimentally.
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