The Zipping-wetting Dynamics at the Breakdown of Superhydrophobicity

Abstract

Under some conditions water droplets can completely wet micro-structured superhydrophobic surfaces. The dynamics of this rapid process is investigated with ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or – more interestingly – in a stepwise manner for a smaller periodicity of the microstructure. The latter phenomenon leads to a growing square-shaped wetted area: liquid laterally enters a new row on a slow timescale of milliseconds, once it happens the row then fills itself towards the sides in microseconds (“zipping”)

    Similar works