44 research outputs found

    Research on vibration response of a reducer of electric vehicle

    Get PDF
    In order to study the vibration response of reducer of electric vehicle, a model for the reducer is established in ANSYS Motion, a multi-body dynamics software. Firstly, a 3D model of the reducer is built, including such assemblies as its shaft, gears, bearing, and its case. Secondly, based on the finite element model, the modal simulation is carried out. Finally, under the specified operating condition when the motor speed increases from 0 rpm to 10000 rpm, with using the STFT method, the vibration response of the reducer is obtained through the multi-body dynamics simulation. After comparing the simulation results between different marked nodes, the conclusion indicates that this process can calculate the vibration characteristics of the reducer quickly and accurately and can lay the foundation for the structural optimization in terms of vibration and acoustic properties

    Compensatory Movement of Contralateral Vocal Folds in Patients With Unilateral Vocal Fold Paralysis.

    Get PDF
    OBJECTIVES(#br)Previous studies of subjects with unilateral vocal fold paralysis (UVFP) as observed in a positron emission tomography-computed tomography (PET-CT) examination have demonstrated false positive results in the contralateral cricoarytenoid, in which the metabolism may be higher. This area may also be the site of contralateral compensatory movement in these patients. In this study, we compared the adduction speed of the contralateral vocal folds in patients with UVFP and in healthy subjects as measured by the stroboscopic laryngoscope frame rate. This study aimed to explore the contralateral compensatory movement of the vocal folds in subjects with UVFP.(#br)METHODS(#br)(1) We collected visual data from 14 patients with UVFP and 14 healthy subjects through a stroboscopic laryngoscope. These subjects were divided into a vocal fold paralysis group and a control group, and we analyzed the excessive adduction of the contralateral vocal folds in the vocal fold paralysis group by examining vocal fold movement speed (pixels/s) as featured in a stroboscopic laryngoscope video. (2) We analyzed the uptake of 18-FDG in the posterior vocal fold from positron emission tomography-computed tomography imaging from four subjects with UVFP and 12 healthy subjects. An independent sample t test and a χ2 test were used to compare data.(#br)RESULTS(#br)Four subjects with UVFP had a higher metabolic rate in the contralateral cricoarytenoid joints, with a significant difference between the two groups, P 0.05.(#br)CONCLUSION(#br)Subjects with UVFP exhibited faster adduction compensation in the contralateral vocal folds, and the contralateral cricoarytenoid joint’s metabolism in subjects with UVFP was higher. These data may help clarify the diagnostic criteria for laryngeal nerve damage

    Analysis on the vibration modes of the electric vehicle motor stator

    Get PDF
    The lightweight design of the electric vehicle motor brought about more serious vibration and noise problem of the motor. An accurate modal calculation was the basis for the study of the vibration and noise characteristics of the electric vehicle motor. The finite element method was used to perform the modal simulation of the PMSM. Through the reasonable simplification and equivalence of the motor stator model, the first 7 orders natural frequencies and corresponding modes of the motor stator under the free state were calculated. After that, the accuracy of the finite element model was verified by the hammering modal experiment of the prototype. Furthermore, the above results will provide the theoretical basis for the electric vehicle motor’s vibration control and NVH improvement

    Deep learning for MRI lesion segmentation in rectal cancer

    Get PDF
    Rectal cancer (RC) is a globally prevalent malignant tumor, presenting significant challenges in its management and treatment. Currently, magnetic resonance imaging (MRI) offers superior soft tissue contrast and radiation-free effects for RC patients, making it the most widely used and effective detection method. In early screening, radiologists rely on patients’ medical radiology characteristics and their extensive clinical experience for diagnosis. However, diagnostic accuracy may be hindered by factors such as limited expertise, visual fatigue, and image clarity issues, resulting in misdiagnosis or missed diagnosis. Moreover, the distribution of surrounding organs in RC is extensive with some organs having similar shapes to the tumor but unclear boundaries; these complexities greatly impede doctors’ ability to diagnose RC accurately. With recent advancements in artificial intelligence, machine learning techniques like deep learning (DL) have demonstrated immense potential and broad prospects in medical image analysis. The emergence of this approach has significantly enhanced research capabilities in medical image classification, detection, and segmentation fields with particular emphasis on medical image segmentation. This review aims to discuss the developmental process of DL segmentation algorithms along with their application progress in lesion segmentation from MRI images of RC to provide theoretical guidance and support for further advancements in this field

    Quantitative Measurement of the Three-dimensional Structure of the Vocal Folds and Its Application in Identifying the Type of Cricoarytenoid Joint Dislocation.

    Get PDF
    OBJECTIVE(#br)The objective of this study was to quantitatively measure the three-dimensional (3D) structure of the vocal folds in normal subjects and in patients with different types of cricoarytenoid dislocation. We will analyze differences in parameters between the groups and also determine if any morphologic parameters possess utility in distinguishing the type and the degree of cricoarytenoid dislocation.(#br)STUDY DESIGN(#br)This retrospective study was conducted using university hospital data.(#br)METHODS(#br)Subjects’ larynges were scanned using dual-source computed tomography (CT). The normal subjects were divided into deep-inhalation and phonation groups, and patients with cricoarytenoid joint dislocation were divided into anterior-dislocation and posterior-dislocation groups. Membranous vocal fold length and width were measured directly on the thin-section CT images. Vocal fold and airway 3D models were constructed using Mimics software and used in combination to measure vocal fold thickness, subglottal convergence angle, and oblique angle of the vocal folds.(#br)RESULTS(#br)The phonation group displayed a greater vocal fold width, greater oblique angle, thinner vocal folds, and a smaller subglottal convergence angle than those of the deep-inhalation group (P < 0.05). The anterior-dislocation group displayed a smaller oblique angle and subglottal convergence angle than the posterior-dislocation group (P < 0.05).(#br)CONCLUSIONS(#br)The 3D structure of the vocal folds during deep inhalation and phonation can be accurately measured using dual-source CT and laryngeal 3D reconstruction. As the anterior-dislocation group yielded negative values for the oblique angle and the posterior-dislocation group yielded positive values, the oblique angle of the vocal folds may possess utility for distinguishing the type and for quantitatively determining the degree of cricoarytenoid dislocation

    Quantitative Measurement of the Three-dimensional Structure of the Vocal Folds and Its Application in Identifying the Type of Cricoarytenoid Joint Dislocation

    Get PDF
    Summary(#br)Objective(#br)The objective of this study was to quantitatively measure the three-dimensional (3D) structure of the vocal folds in normal subjects and in patients with different types of cricoarytenoid dislocation. We will analyze differences in parameters between the groups and also determine if any morphologic parameters possess utility in distinguishing the type and the degree of cricoarytenoid dislocation.(#br)Study Design(#br)This retrospective study was conducted using university hospital data.(#br)Methods(#br)Subjects’ larynges were scanned using dual-source computed tomography (CT). The normal subjects were divided into deep-inhalation and phonation groups, and patients with cricoarytenoid joint dislocation were divided into anterior-dislocation and posterior-dislocation groups. Membranous vocal fold length and width were measured directly on the thin-section CT images. Vocal fold and airway 3D models were constructed using Mimics software and used in combination to measure vocal fold thickness, subglottal convergence angle, and oblique angle of the vocal folds.(#br)Results(#br)The phonation group displayed a greater vocal fold width, greater oblique angle, thinner vocal folds, and a smaller subglottal convergence angle than those of the deep-inhalation group ( P < 0.05). The anterior-dislocation group displayed a smaller oblique angle and subglottal convergence angle than the posterior-dislocation group ( P < 0.05).(#br)Conclusions(#br)The 3D structure of the vocal folds during deep inhalation and phonation can be accurately measured using dual-source CT and laryngeal 3D reconstruction. As the anterior-dislocation group yielded negative values for the oblique angle and the posterior-dislocation group yielded positive values, the oblique angle of the vocal folds may possess utility for distinguishing the type and for quantitatively determining the degree of cricoarytenoid dislocation

    Fractal Characterization of Pressure-Relief Gas Permeability Evolution in a Mining Fracture Network

    No full text
    The process of underground coal mining fractures the overlying strata and may provide storage and transportation space for gas by changing the roof rock permeability, which is released by pressure after mining. This paper adopts the experimental method of physical similarity simulation and combines the fractal theory to study the permeability characteristics of the fracture network after mining, and it establishes the fractal permeability equation of pressure-relief gas. The results of the study show that the fracture opening shows a positive correlation with the overburden permeability, whereas the tortuosity of the fracture shows a negative correlation with the overburden permeability. The shape of the high permeability area in the fracture network is found to be similar to the hat-shaped elliptical parabolic zone. In the process of permeability evolution, the key layer structure of the overburden rock is considered as the main factor that affects the trend of change in permeability. Furthermore, based on the above research results, this study developed a targeted design of high-level boreholes in the experimental face and reversed the permeability changes around the drainage borehole. The average error between the actual measured value and the theoretically calculated value is found to be 8.11%. The theoretical model and the permeability evolution law obtained from the research results can provide valuable references and insights into further research on the pressure-relief gas flow model in the goaf

    Analysis and Design of A PMQR-Type Repetitive Control Scheme for Grid-Connected H6 Inverters

    Get PDF
    There exist several challenges in the implementation of proportional multiple quasi-resonant (PMQR) control strategies in single-phase grid-connected H6 inverters, such as high computational costs and design complexity. To overcome these challenges, this paper proposes a proportional multiple quasi-resonant (PMQR)-type repetitive control (PMQR-type RC) scheme for single-phase grid-connected H6 inverters. In the control scheme, a repetitive controller and a proportional controller run in parallel. The repetitive controller is to improve the steady-state harmonics compensation ability, while the proportional controller can enhance the transient performance of the system. Both theoretical stability analysis and detailed design steps regarding the proposed control scheme are introduced. Finally, comparison results on a typical single-phase grid-connected H6 inverter with LC filter under a variety of control methods verify the capability of suppressing harmonics and the robust performance of the proposed control strategy against grid disturbances
    corecore