1,624 research outputs found

    3-Ethyl-4-[(E)-2-methyl­benzyl­idene­amino]-1H-1,2,4-triazole-5(4H)-thione

    Get PDF
    Crystals of the title compound, C12H14N4S, were obtained from a condensation reaction of 4-amino-3-ethyl-1H-1,2,4-triazole-5(4H)-thione and 2-methyl­benzaldehyde. In the mol­ecular structure, there is a short N=C double bond [1.255 (2) Å], and the benzene and triazole rings are located on opposite sites of this double bond. The two rings are approximately parallel to each other, the dihedral angle being 1.75 (11)°. A partially overlapped arrangement is observed between the nearly parallel triazole and benzene rings of adjacent mol­ecules; the perpendicular distance of the centroid of the triazole ring from the benzene ring is 3.482 Å, indicating the existence of π–π stacking in the crystal structure

    Methyl 3-carboxy-5-nitrobenzoate

    Get PDF
    The structure of the title compound, C9H7NO6, is essentially planar [maximum deviation 0.284 (2)Å] except for the methyl H atoms. The crystal structure is stabilized by asymmetric O—H⋯O hydrogen bonds linking the hydrogen carboxyl­ates into pairs around the inversion centres. There is also π–π stacking of the benzene rings [centroid–centroid distance 3.6912 (12) Å]

    2-Methyl­benzaldehyde 2-methyl­benzyl­idenehydrazone

    Get PDF
    The mol­ecule of the title compound, C16H16N2, is centrosymmetric and the dihedral angle between the benzene ring and the dimethyl­hydrazine mean plane is 16.11 (15)°

    FY2014 Annual Report

    Get PDF
    Abstract Background This population-based study was designed to investigate whether consumption of sugar-sweetened beverages (SSB) is associated with lower serum total testosterone concentration in men 20–39 years old. Methods All data for this study were retrieved from the National Health and Nutrition Examination Survey (NHANES) 2011–2012. The primary outcome was serum testosterone concentration, and main independent variable was SSB intake. Other variables included age, race/ethnicity, poverty/income ratio, body mass index (BMI), serum cotinine, heavy drinking, and physical activity. Results Among all subjects (N = 545), 486 (90.4%) had normal testosterone levels (defined as ≥231 ng/dL) and 59 (9.6%) had low testosterone levels (defined as < 231 ng/dL). Multivariate logistic regression revealed the odds of low testosterone was significantly greater with increasing SSB consumption (Q4 [≥442 kcal/day] vs. Q1 [≤137 kcal/day]), adjusted odds ratio [aOR] = 2.29, p = 0.041]. After adjusting for possible confounding variables, BMI was an independent risk factor for low testosterone level; subjects with BMI ≥ 25 kg/m2 had a higher risk of having a low testosterone level than those with BMI < 25 kg/m2 (aOR = 3.68, p = 0.044). Conclusion SSB consumption is significantly associated with low serum testosterone in men 20–39 years old in the United States

    Genetic Variations rs859, rs4646, and rs372883 in the 3′-Untranslated Regions of Genes Are Associated with a Risk of IgA Nephropathy

    Get PDF
    Background: Previous studies indicate that genetic factors play an important role in the pathogenesis of IgA nephropathy (IgAN). To evaluate the association between single nucleotide polymorphisms (SNPs) in the 3′-untranslated region (3′-UTR) of genes and IgAN risk, we performed a case-control study in a Chinese Han population. Materials: Twelve SNPs were selected and genotyped in 384 IgAN patients and 357 healthy controls. Odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression adjusted for age and gender. Multifactor dimensionality reduction (MDR) was used to analyze the interaction of SNP-SNP with IgAN risk. Results: Our study demonstrated that IL-16 rs859 (OR = 0.75, p = 0.040) and CYP19A1 rs4646 (OR = 2.58, p = 0.017) polymorphism were related to the risk of IgAN. In stratified analyses by gender, CYP19A1 rs4646 (OR = 2.96, p = 0.015) and BACH1 rs372883 (OR = 1.81, p = 0.038) polymorphisms conferred susceptibility to IgAN in males. Besides, rs372883 reduced IgAN risk in females (OR = 0.44, p = 0.042). We also found rs859 polymorphism was correlated with grade I-II (OR = 0.42, p = 0.028) in subgroup analysis of Lee’s classification. Additionally, we found rs4646 polymorphism was correlated with serum creatinine (p = 0.035). Conclusion: Our results suggested that the IL-16 rs859, CYP19A1 rs4646, and BACH1 rs372883 polymorphisms have potential roles in the genetic susceptibility to IgAN in Chinese Han population

    Protective effect of heat-processed Gynostemma pentaphyllum on high fat diet-induced glucose metabolic disorders mice

    Get PDF
    Glucose metabolic disorders (GMD) can promote insulin resistance (IR) and diabetes, and damage liver and kidney. Gynostemma pentaphyllum is commonly used in the clinical treatment of diabetes, but the research on its main active constituents and GMD has not been reported yet. This study explores the therapeutic potential of gypenosides of heat-processed Gynostemma pentaphyllum (HGyp) on high-fat diet-induced GMD in mice. HGyp was administered at different doses for 12 weeks. The investigation encompassed an array of parameters, including body weight, blood lipids, blood glucose, and liver tissue components. Metabolomic and network analyses were conducted to uncover potential targets and pathways associated with HGyp treatment. The results revealed that HGyp alleviated GMD by reducing body weight, blood glucose, and improving blood lipids levels, while increasing liver glycogen and antioxidant enzyme levels. Additionally, HGyp exhibited protective effects on liver and kidney health by reducing tissue damage. Fourteen blood components were detected by LC-MS. Metabolomic and network analyses indicated the potential engagement of the AGE-RAGE signaling pathway in the therapeutic effects of HGyp.Furthermore, Western blot and ELISA assays confirmed that HGyp upregulated GLO1 and GLUT4 while down-regulating AGEs and RAGE expression in liver tissue. In light of these findings, HGyp demonstrates promise as a potential therapeutic candidate for combating GMD, warranting further exploration in the development of therapeutic strategies or functional products
    corecore