8,489 research outputs found

    PADS: A simple yet effective pattern-aware dynamic search method for fast maximal frequent pattern mining

    Full text link
    While frequent pattern mining is fundamental for many data mining tasks, mining maximal frequent patterns efficiently is important in both theory and applications of frequent pattern mining. The fundamental challenge is how to search a large space of item combinations. Most of the existing methods search an enumeration tree of item combinations in a depth-first manner. In this paper, we develop a new technique for more efficient max-pattern mining. Our method is pattern-aware: it uses the patterns already found to schedule its future search so that many search subspaces can be pruned. We present efficient techniques to implement the new approach. As indicated by a systematic empirical study using the benchmark data sets, our new approach outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 clearly. The source code and the executable code (on both Windows and Linux platforms) are publicly available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip. © Springer-Verlag London Limited 2008

    A rationally designed reversible 'turn-off' sensor for glutathione

    Get PDF
    γ-Glutamyl-cysteinyl-glycine (GSH) plays a critical role in maintaining redox homeostasis in biological systems and a decrease in its cellular levels is associated with diseases. Existing fluorescence-based chemosensors for GSH acts as irreversible reaction-based probes that exhibit a maximum fluorescence ('turn-on') once the reaction is complete, regardless of the actual concentration of GSH. A reversible, reaction-based 'turn-off' probe ( 1 ) is reported here to sense the decreasing levels of GSH, a situation known to occur at the onset of various diseases. The more fluorescent merocyanine (MC) isomer of 1 exists in aqueous solution and this reacts with GSH to induce formation of the ring-closed spiropyran (SP) isomer, with a measurable decrease in absorbance and fluorescence ('turn-off'). Sensor 1 has good aqueous solubility and shows an excellent selectivity for GSH over other biologically relevant metal ions and aminothiol analytes. The sensor permeates HEK 293 cells and an increase in fluorescence is observed on adding buthionine sulfoximine, an inhibitor of GSH synthesis.Sabrina Heng, Xiaozhou Zhang, Jinxin Pei and Andrew D. Abel

    Performance Analysis of Resistive Superconducting Fault Current Limiter Using LN2 and GHe Cooling

    Get PDF

    Performance Analysis of Resistive Superconducting Fault Current Limiter Using LN2 and GHe Cooling

    Get PDF
    Large-scale electric aircraft is a disruptive technology to address the environmental impact of air travel. Fault current limitation is crucial to realise the safety and reliability of the electric aircraft, in particular for large-scale electric aircraft using DC distribution network. This paper investigates the behavior of the resistive SFCL under different cryogenic cooling systems including liquid nitrogen and helium gas circulation cooling systems for the electric aircraft DC distribution network. Electromagnetic and thermoelectric models were used to predict the characteristics of resistive SFCL. The simulation results demonstrate that it is promising to design resistive SFCL using liquid nitrogen cooling as well as helium gas circulation cooling systems, which offer flexibility for SFCL cryogenic cooling system for electric aircraft applications.<br/

    Effects of Screen Size on Biochemical Conversion of Big Bluestem Biomass for Biofuel Production

    Get PDF
    Citation: Song, X. X., Zhang, M., Zhang, K., Pei, Z. J., & Wang, D. H. (2015). Effects of Screen Size on Biochemical Conversion of Big Bluestem Biomass for Biofuel Production. Advances in Materials Science and Engineering, 9. doi:10.1155/2015/947350Biomass size reduction is the first step for biofuel production from cellulosic biomass through biochemical pathway, and it is usually performed on a mill with screen installed to control the size of the produced particles. The absence of in-depth knowledge about the effects of screen size throughout the biochemical conversion of cellulosic biomass makes it difficult to choose the screen size to conduct biomass size reduction to minimize the energy consumption on mills, maximize the cellulose recovery rate after pretreatment, and maximize the enzymatic hydrolysis efficiency. The objective of this work is to address this issue by generating new knowledge on the effects of screen size in these three processes: size reduction, pretreatment, and enzymatic hydrolysis in conversion of big bluestem biomass for biofuel production. Four screen sizes used in this study were 1, 2, 4, and 8 mm. It was found that using a larger screen size saved energy in biomass size reduction on a knife mill. Moreover, particles produced with larger screen sizes achieved higher cellulose recovery rate after pretreatment, higher enzymatic hydrolysis efficiency, and higher total sugar yield

    Efficiently computing Top-K shortest path join

    Full text link
    © 2015, Copyright is with the authors. Driven by many applications, in this paper we study the problem of computing the top-k shortest paths from one set of target nodes to another set of target nodes in a graph, namely the top-k shortest path join (KPJ) between two sets of target nodes. While KPJ is an extension of the problem of computing the top-k shortest paths (KSP) between two target nodes, the existing technique by converting KPJ to KSP has several deficiencies in conducting the computation. To resolve these, we propose to use the best-first paradigm to recursively divide search subspaces into smaller subspaces, and to compute the shortest path in each of the subspaces in a prioritized order based on their lower bounds. Consequently, we only compute shortest paths in subspaces whose lower bounds are larger than the length of the current k-th shortest path. To improve the efficiency, we further propose an iteratively bounding approach to tightening lower bounds of subspaces. Moreover, we propose two index structures which can be used to reduce the exploration area of a graph dramatically; these greatly speed up the computation. Extensive performance studies based on real road networks demonstrate the scalability of our approaches and that our approaches outperform the existing approach by several orders of magnitude. Furthermore, our approaches can be immediately used to compute KSP. Our experiment also demonstrates that our techniques outperform the state-of-the-art algorithm for KSP by several orders of magnitude

    Model testing on rainfall-induced landslide of loose soil in Wenchuan earthquake region

    Get PDF
    This study investigates the formation process of rainfall-induced landslide for slopes composed of loose soil in the Wenchuan earthquake region. Experimental investigations have been performed on the landslide's formation and the variation of the controlling soil parameters under various artificial rainfall conditions. The landslide triggering mechanisms can be described in the following way. Firstly, the large porosity of the loose soil facilitated the infiltration of water, which increased the pore water pressure and reduced the shear strength of the soil significantly. In addition, the rainfalls probably caused the concentration of finer particles at a certain depth of the valley slopes. This concentration within the soil increased the pore water pressure significantly, and consequently reduced both the porosity ratio and permeability. Therefore, when the pore water pressure reached a critical state, the effective shear strength of the soil diminished, inducing the landslide's formation

    Computation offloading and resource allocation for wireless powered mobile edge computing with latency constraint

    Get PDF
    In this letter, we consider a multi-user wireless powered mobile edge computing (MEC) system, in which a base station (BS) integrated with an MEC server transfers energy to wireless devices (WDs) as an incentive to encourage them to offload computing tasks to the MEC server. We formulate an optimization problem to contemporaneously maximize the data utility and minimize the energy consumption of the operator under the offloaded delay constraint, by jointly controlling wireless-power allocation at the BS as well as offloaded data size and power allocation at the WDs. To solve this problem, the offloaded delay constraint is first transformed into an offloaded data rate constraint. Then an iterative algorithm is designed to obtain the optimal offloaded data size and power allocation at the WDs by using Lagrangian dual method. The results are applied to derive the optimal wireless-power allocation at the BS. Finally, simulation results show that our algorithm outperforms existing schemes in terms of operator’s reward
    • …
    corecore