31 research outputs found

    An ALMA Survey of H₂CO in Protoplanetary Disks

    Get PDF
    H₂CO is one of the most abundant organic molecules in protoplanetary disks and can serve as a precursor to more complex organic chemistry. We present an Atacama Large Millimeter/submillimeter Array survey of H₂CO toward 15 disks covering a range of stellar spectral types, stellar ages, and dust continuum morphologies. H₂CO is detected toward 13 disks and tentatively detected toward a fourteenth. We find both centrally peaked and centrally depressed emission morphologies, and half of the disks show ring-like structures at or beyond expected CO snowline locations. Together these morphologies suggest that H₂CO in disks is commonly produced through both gas-phase and CO-ice-regulated grain-surface chemistry. We extract disk-averaged and azimuthally-averaged H₂CO excitation temperatures and column densities for four disks with multiple H₂CO line detections. The temperatures are between 20–50 K, with the exception of colder temperatures in the DM Tau disk. These temperatures suggest that H₂CO emission in disks generally emerges from the warm molecular layer, with some contributions from the colder midplane. Applying the same H₂CO excitation temperatures to all disks in the survey, we find that H₂CO column densities span almost three orders of magnitude (~5 × 10¹¹–5 × 10¹⁴ cm⁻²). The column densities appear uncorrelated with disk size and stellar age, but Herbig Ae disks may have less H₂CO compared to T Tauri disks, possibly because of less CO freeze-out. More H₂CO observations toward Herbig Ae disks are needed to confirm this tentative trend, and to better constrain under which disk conditions H₂CO and other oxygen-bearing organics efficiently form during planet formation

    An unbiased ALMA spectral survey of the LkCa 15 and MWC 480 protoplanetary disks

    Get PDF
    Funding: R.A.L. gratefully acknowledges funding from ALMA Student Observing Support and a Jansky Fellowship. K.I.O. acknowledges funding from the David and Lucile Packard Foundation and from the Simons Foundation (SCOL #321183). J.H. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant No. DGE-1144152. E.A.B. acknowledges funding through NSF grant AST-1514670 and NASA NNX16AB48G. C.W. acknowledges financial support from STFC (grant reference ST/R000549/1) and the University of Leeds.The volatile contents of protoplanetary disks both set the potential for planetary chemistry and provide valuable probes of defining disk system characteristics such as stellar mass, gas mass, ionization, and temperature structure. Current disk molecular inventories are fragmented, however, giving an incomplete picture: unbiased spectral line surveys are needed to assess the volatile content. We present here an overview of such a survey of the protoplanetary disks around the Herbig Ae star MWC 480 and the T Tauri star LkCa 15 in ALMA Band 7, spanning ∼36 GHz from 275 to 317 GHz and representing an order of magnitude increase in sensitivity over previous single-dish surveys. We detect 14 molecular species (including isotopologues), with five species (C34S, 13CS, H2CS, DNC, and C2D) detected for the first time in protoplanetary disks. Significant differences are observed in the molecular inventories of MWC 480 and LkCa 15, and we discuss how these results may be interpreted in light of the different physical conditions of these two disk systems.PostprintPeer reviewe

    An ALMA Survey of H₂CO in Protoplanetary Disks

    Get PDF
    H₂CO is one of the most abundant organic molecules in protoplanetary disks and can serve as a precursor to more complex organic chemistry. We present an Atacama Large Millimeter/submillimeter Array survey of H₂CO toward 15 disks covering a range of stellar spectral types, stellar ages, and dust continuum morphologies. H₂CO is detected toward 13 disks and tentatively detected toward a fourteenth. We find both centrally peaked and centrally depressed emission morphologies, and half of the disks show ring-like structures at or beyond expected CO snowline locations. Together these morphologies suggest that H₂CO in disks is commonly produced through both gas-phase and CO-ice-regulated grain-surface chemistry. We extract disk-averaged and azimuthally-averaged H₂CO excitation temperatures and column densities for four disks with multiple H₂CO line detections. The temperatures are between 20–50 K, with the exception of colder temperatures in the DM Tau disk. These temperatures suggest that H₂CO emission in disks generally emerges from the warm molecular layer, with some contributions from the colder midplane. Applying the same H₂CO excitation temperatures to all disks in the survey, we find that H₂CO column densities span almost three orders of magnitude (~5 × 10¹¹–5 × 10¹⁴ cm⁻²). The column densities appear uncorrelated with disk size and stellar age, but Herbig Ae disks may have less H₂CO compared to T Tauri disks, possibly because of less CO freeze-out. More H₂CO observations toward Herbig Ae disks are needed to confirm this tentative trend, and to better constrain under which disk conditions H₂CO and other oxygen-bearing organics efficiently form during planet formation
    corecore