267 research outputs found
Identification, physiological actions, and distribution of TPSGFLGMRamide: A novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs
In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. © 2007 The Authors
Identification, physiological actions, and distribution of TPSGFLGMRamide: A novel tachykinin-related peptide from the midgut and stomatogastric nervous system of Cancer crabs
In most invertebrates, multiple species-specific isoforms of tachykinin-related peptide (TRP) are common. In contrast, only a single conserved TRP isoform, APSGFLGMRamide, has been documented in decapod crustaceans, leading to the hypothesis that it is the sole TRP present in this arthropod order. Previous studies of crustacean TRPs have focused on neuronal tissue, but the recent demonstration of TRPs in midgut epithelial cells in Cancer species led us to question whether other TRPs are present in the gut, as is the case in insects. Using direct tissue matrix assisted laser desorption/ionization Fourier transform mass spectrometry, in combination with sustained off-resonance irradiation collision-induced dissociation, we found that at least one additional TRP is present in Cancer irroratus, Cancer borealis, Cancer magister, and Cancer productus. The novel TRP isoform, TPSGFLGMRamide, was present not only in the midgut, but also in the stomatogastric nervous system (STNS). In addition, we identified an unprocessed TRP precursor APSGFLGMRG, which was detected in midgut tissues only. TRP immunohistochemistry, in combination with preadsorption studies, suggests that APSGFLGMRamide and TPSGFLGMRamide are co-localized in the stomatogastric ganglion (STG), which is contained within the STNS. Exogenous application of TPSGFLGMRamide to the STG elicited a pyloric motor pattern that was identical to that elicited by APSGFLGMRamide, whereas APSGFLGMRG did not alter the pyloric motor pattern. © 2007 The Authors
Delineating limits: Confronting predicted climatic suitability to field performance in mistletoe populations
1. Biotic stressors such as hemiparasites have a profound impact on forest functioning. However, predicting the future incidence of these stressors on forests remains challenging because climate-based distribution does not consider tree-hemiparasite interactions or the impacts of extreme climate events on stressors'' performance.
2. We use species distribution models (SDMs) and ecophysiological and demographic field data to assess whether climatic suitability is a proxy for the performance of the hemiparasite mistletoe (Viscum album) in two forests with contrasting climatic conditions. Two host tree species representing wet-cold (Scots pine) and dry-warm (Aleppo pine) conditions were selected. We fitted SDMs based on climate variables, and measured different ecophysiological variables capturing cold- (photoinhibition) and drought tolerance (intrinsic water-use efficiency, iWUE). We also assessed demographic variables related to seed germination and establishment rates of mistletoe through a translocation experiment.
3. Species distribution models showed a high climatic suitability of mistletoe in both forests. Mistletoes living in the Scots pines site presented a higher cold tolerance, while those inhabiting the Aleppo pine site showed a higher iWUE. Seedlings coming from local seeds showed a lower mortality than seedlings coming from translocated seeds. Germination and seedling establishment showed temporal mismatches when comparing local and translocated seeds.
4. Synthesis. Habitat suitability predicted by SDMs based on climate data and field performance were related in this mistletoe species. However, ecophysiological and demographic variables indicated a lower fitness of mistletoe in the dry-warm site associated with drought stress. In conclusion, predicted climate suitability based on SDMs forecasts should be refined using field data on actual performance and considering plant-to-plant interactions and extreme climate events
Elevated atmospheric CO2 modifies responses to water-stress and flowering of Mediterranean desert truffle mycorrhizal shrubs
Predicted increases in atmospheric concentration of carbon dioxide (CO2) coupled with increased temperatures and drought are expected to strongly influence the development of most of the plant species in the world, especially in areas with high risk of desertification like the Mediterranean basin. Helianthemum almeriense is an ecologically important Mediterranean shrub with an added interest because it serves as the host for the Terfezia claveryi mycorrhizal fungus, which is a desert truffle with increasingly commercial interest. Although both plant and fungi are known to be well adapted to dry conditions, it is still uncertain how the increase in atmospheric CO2 will influence them. In this article we have addressed the physiological responses of H. almeriense × T. claveryi mycorrhizal plants to increases in atmospheric CO2 coupled with drought and high vapor pressure deficit. This work reports one of the few estimations of mesophyll conductance in a drought deciduous Mediterranean shrub and evaluates its role in photosynthesis limitation. High atmospheric CO2 concentrations help desert truffle mycorrhizal plants to cope with the adverse effects of progressive drought during Mediterranean springs by improving carbon net assimilation, intrinsic water use efficiency and dispersal of the species through increased flowering events
Non-contact ultrasonic resonant spectroscopy resolves the elastic properties of layered plant tissues
This paper describes the application of the wide-band non-contact ultrasonic resonant spectroscopy technique to layered plant tissues (leaves), a method to extract the properties of main component tissues: palisade parenchyma and spongy mesophyll, a verification of the obtained properties, and a discussion of the implications of the observed elastic anisotropy. Transmission coefficient spectra of Ligustrum lucidum leaves with the thickness in the range of 250-850 µm revealing several order thickness resonances have been measured. A leaf acoustic model based on a two-layered structure and a metaheuristic (simulated annealing algorithm) is used to solve the inverse problem. The extracted parameters of these two layers of tissue are consistent with cross-sectional cryo-SEM images and other independent measurements. The extracted resonant frequency and the impedance of each layer explain the origin of the observed resonances. Finally, the elastic modulus of each layer is extracted and analyzed. The presented technique is a unique tool to study (in vivo and in a completely non-invasive way) the ultrasonic, elastic, and viscoelastic properties of layered plant tissues which could lead to a better understanding of the relationship between the tissue microstructure and the tissue function with macroscopic properties and how this may affect water relations
Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?
Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties
Victimization, Urbanicity, and the Relevance of Context: School Routines, Race and Ethnicity, and Adolescent Violence
The United States is undergoing a historical racial and ethnic demographic shift. There is limited criminological research exploring if and how these changes influence variation in the relationship between routine activity theory and adolescent violence. Although the link between routine activities and victimization has been tested and well established, criminologists have questioned if routine activities can explain adolescent violence across different social contexts. Prior research demonstrates that there are potential nuances in the theoretical connections between routine activities and victimization, particularly when considering race and ethnicity. This study builds on previous research by questioning if the elements of routine activities predict victimization across predominately urban, rural, and suburban schools. The implications of the relevance of school context in the relationships between routine activities and adolescent victimization will also be discussed more generally
Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?
Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties
Prediction of adverse neonatal outcome at admission for early-onset preeclampsia with severe features
Preeclampsia remains the leading cause of maternal morbidity and mortality. Consequently, research has focused on validating tools to predict maternal outcomes regarding clinical and biochemical features from the maternal compartment. However, preeclampsia also leads to neonatal complications due to placental insufficiency and prematurity, being the early-onset type associated with the poorest outcome. Hence, it is imperative to study whether these existing tools can predict adverse neonatal outcome.To assess the predictive value for adverse neonatal outcome of Doppler ultrasound, angiogenic factors and multi-parametric risk-score models in women with early-onset severe preeclampsia.This is a prospective cohort study of consecutive singleton pregnancies complicated by early-onset (developed before 34 week's gestation) severe preeclampsia.63 women with early-onset severe preeclampsia, 18 (28.6%) presented an adverse neonatal outcome. Placental growth factor (PlGF) showed the best discrimination between neonatal outcomes among angiogenic factors. PREP-L score is a multi-parametric risk-score for the prediction of complications in early-onset preeclampsia which includes maternal characteristics and clinical and analytical data obtained at admission. Good predictive values for the prediction of neonatal complications were found with the combination of PREP-L score with advanced Doppler (AUC ROC 0.9 95% CI 0.82-0.98]) and with PlGF levels (AUC ROC 0.91 [95% CI 0.84-0.98]).The combination of maternal risk scoring (PREP-L score) with angiogenic factors or fetal Doppler ultrasound at the time of diagnosis of early-onset preeclampsia with severe features performs well in predicting adverse neonatal outcome.Copyright © 2023 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved
- …