13 research outputs found

    The Drosophila nucleoporin DNup88 localizes DNup214 and CRM1 on the nuclear envelope and attenuates NES-mediated nuclear export

    Get PDF
    Many cellular responses rely on the control of nucleocytoplasmic transport of transcriptional regulators. The Drosophila nucleoporin Nup88 is selectively required for nuclear accumulation of Rel proteins and full activation of the innate immune response. Here, we investigate the mechanisms underlying its role in nucleocytoplasmic transport. Nuclear import of an nuclear localization signal-enhanced green fluorescent protein (NLS-EGFP) reporter is not affected in DNup88 (members only; mbo) mutants, whereas the level of CRM1-dependent EGFP-nuclear export signal (EGFP-NES) export is increased. We show that the nuclear accumulation of the Drosophila Rel protein Dorsal requires CRM1. DNup88 binds to DNup214 and DCRM1 in vitro, and both proteins become mislocalized from the nuclear rim into the nucleus of mbo mutants. Overexpression of DNup88 is sufficient to relocalize DNup214 and CRM1 on the nuclear envelope and revert the mutant phenotypes. We propose that a major function of DNup88 is to anchor DNup214 and CRM1 on the nuclear envelope and thereby attenuate NES-mediated nuclear export

    Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport

    Get PDF
    The phenylanine-glycine (FG)–rich regions of several nucleoporins both bind to nuclear transport receptors and collectively provide a diffusion barrier to the nuclear pores. However, the in vivo roles of FG nucleoporins in transport remain unclear. We have inactivated 30 putative nucleoporins in cultured Drosophila melanogaster S2 cells by RNA interference and analyzed the phenotypes on importin α/β−mediated import and CRM1-dependent protein export. The fly homologues of FG nucleoporins Nup358, Nup153, and Nup54 are selectively required for import. The FG repeats of Nup153 are necessary for its function in transport, whereas the remainder of the protein maintains pore integrity. Inactivation of the CRM1 cofactor RanBP3 decreased the nuclear accumulation of CRM1 and protein export. We report a surprisingly antagonistic relationship between RanBP3 and the Nup214 FG region in determining CRM1 localization and its function in protein export. Our data suggest that peripheral metazoan FG nucleoporins have distinct functions in nuclear protein transport events

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Filtering for compound heterozygous sequence variants in non-consanguineous pedigrees.

    Get PDF
    The identification of disease-causing mutations in next-generation sequencing (NGS) data requires efficient filtering techniques. In patients with rare recessive diseases, compound heterozygosity of pathogenic mutations is the most likely inheritance model if the parents are non-consanguineous. We developed a web-based compound heterozygous filter that is suited for data from NGS projects and that is easy to use for non-bioinformaticians. We analyzed the power of compound heterozygous mutation filtering by deriving background distributions for healthy individuals from different ethnicities and studied the effectiveness in trios as well as more complex pedigree structures. While usually more then 30 genes harbor potential compound heterozygotes in single exomes, this number can be markedly reduced with every additional member of the pedigree that is included in the analysis. In a real data set with exomes of four family members, two sisters affected by Mabry syndrome and their healthy parents, the disease-causing gene PIGO, which harbors the pathogenic compound heterozygous variants, could be readily identified. Compound heterozygous filtering is an efficient means to reduce the number of candidate mutations in studies aiming at identifying recessive disease genes in non-consanguineous families. A web-server is provided to make this filtering strategy available at www.gene-talk.de

    Compound Heterozygote Filtering Rules.

    No full text
    <p>If both parents of the index patient are unaffected it is not possible that one of the heterozygous disease causing mutations is present in a heterozygous state in both parents unless a recombination occurred between this variant and the second compound heterozygous mutation.</p

    Exomes of 85 European individuals (CEU) as well as 88 African individuals (YRI) were filtered for rare compound heterozygous candidate variants.

    No full text
    <p>A) In average around 230 variants pass the filter in CEU exomes and 309 in YRI exomes. B) The potential compound heterozygotes are distributed over 31 genes in CEU individuals and 67 genes in YRI individuals. C) Altogether 1998 genes harbored potential compound heterozygous variants in the tested individuals and compound heterozygotes in 1066 genes occurred only in singular cases.</p

    Illustration of mapping artifacts resulting in false positive variant detection.

    No full text
    <p>The illustrated sample carries a mutation in the maternal copy of a pseudogene of <i>NBPF10</i>. If the pseudogene is not included in the reference sequence, the reads originating from this pseudogene are mismapped. This may result in a false variant call. Indicative for false genotype calls are proportions of reads supporting the alternate allele that strongly deviate from 0.5 or 1.</p

    The length of the coding sequence and the mean number of rare alleles per gene.

    No full text
    <p>In an average healthy individual from the 5000 exomes project there is more than one rare heterozygous variant in <i>MUC16</i> that has an allele frequency below 0.01 in the reference population. In contrast, the coding sequence of <i>PIGO</i> is much shorter and rare heterozygous variants occur in less than 8 out of 1000 exomes.</p

    Filtering results for compound heterozyotes in a case study.

    No full text
    <p>With the filter settings for genotype frequency <0.01, effect on protein level (functional filter: missense, nonsense, stop loss, splice site, insertions or deletions), and compound heterozygous yields six variants in three genes. <i>MUC16</i> and <i>NBPR10</i> are both genes from large gene families known for their high variability and detection artifacts due to pseudogenes. The heterozygotes in <i>PIGO</i> remain as the likeliest candidates. The <i>Show</i> icon at the right end of the line links to an expert curated annotation database that indicates that the mutation in <i>PIGO</i> is causing Hyperphosphatasia with mental retardation syndrome and has been published in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070151#pone.0070151-Krawitz1" target="_blank">[9]</a>. The gene view for <i>PIGO</i> lists all variant annotations for this gene and links to further knowledge bases. The length of the coding sequence of the longest transcript (max. CDS) and the mean number of rare heterozygous variant calls per exome (MRHC) are important parameters for the assessment of candidate genes.</p
    corecore