21 research outputs found

    Hyperbolic phase and squeeze-parameter estimation

    Get PDF
    We define a new representation, the hyperbolic phase representation, which enables optimal estimation of a squeeze parameter in the sense of quantum estimation theory. We compare the signal-to-noise ratio for such measurements, with conventional measurement based on photon counting and homodyne detection. The signal-to-noise ratio for hyperbolic phase measurements is shown to increase quadratically with the squeezing parameter for fixed input power

    Exact uncertainty relations: physical significance

    Full text link
    The Heisenberg inequality \Delta X \Delta P \geq \hbar/2 can be replaced by an exact equality, for suitably chosen measures of position and momentum uncertainty, which is valid for all wavefunctions. The statistics of complementary observables are thus connected by an ``exact'' uncertainty relation.Comment: Latex, 24 pages. This a substantially shortened version of quant-ph/0103072, with less technical detail and focusing on physical conten
    corecore