18 research outputs found

    Rearranged DNA in mitochondrial DNA maintenance disorders

    Get PDF
    Mitochondrial genetics has been changing its focus during the last decade. Originally limited to describing effects of mutations of the mitochondrial DNA (mtDNA) research at present aims to understand circumstances of mutation generation and propagation in the context of mitochondrial genome maintenance. Key players of the mitochondrial DNA synthesis machinery have been thoroughly investigated by many research groups. However, little is known about the influence of other processes that are crucial for mtDNA maintenance. During my PhD study, I have been working on projects that seek to shed light on specific aspects of disturbances in mtDNA maintenance. (i) Investigating three families with an mtDNA maintenance disorder, we discovered a novel gene MGME1 that can process single stranded DNA molecules and flap structures, shows 5’-exonuclease activity, and probably plays a role in the process of replication and turn-over of replication intermediates, such as 7S DNA. (ii) Different factors that affect mitochondrial biogenesis in general might also influence mtDNA maintenance. Mitofusin 2 is one of these factors playing a crucial role in fusion of mitochondria, and thus in achieving an appropriate balance of mitochondrial dynamics. Pathogenic mutations in the MFN2 gene lead to mitochondrial fragmentation. We were able to show that alteration of mitochondrial dynamic leads to respiratory deficiency through a disturbed mtDNA replication. (iii) Our group developed techniques to investigate complex mixtures of large mtDNA deletions that are known to be involved in several human diseases, such as Parkinson’s and Alzheimer’s, as well as, in normal aging. We demonstrate that TLE with AHS, a rather common neurological disorder, is also associated with pathological changes in the mitochondrial genome. Analyzing detailed spectra of deletions we are able to investigate alterations of deletion patterns that might provide hints about different mechanisms leading to deletion generation

    Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have analyzed the complete mitochondrial genomes of 22 <it>Pan paniscus </it>(bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of <it>Homo sapiens</it>.</p> <p>Results</p> <p>We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (<it>d</it><sub><it>N</it></sub><it>/d</it><sub><it>S</it></sub>) among polymorphic positions in bonobos and in 4902 <it>Homo sapiens </it>mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F<sub>0</sub>F<sub>1</sub>-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased <it>d</it><sub><it>N</it></sub><it>/d</it><sub><it>S </it></sub>ratios when compared to bonobos.</p> <p>Conclusions</p> <p>Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.</p

    Linear mitochondrial DNA is rapidly degraded by components of the replication machinery.

    Get PDF
    Emerging gene therapy approaches that aim to eliminate pathogenic mutations of mitochondrial DNA (mtDNA) rely on efficient degradation of linearized mtDNA, but the enzymatic machinery performing this task is presently unknown. Here, we show that, in cellular models of restriction endonuclease-induced mtDNA double-strand breaks, linear mtDNA is eliminated within hours by exonucleolytic activities. Inactivation of the mitochondrial 5'-3'exonuclease MGME1, elimination of the 3'-5'exonuclease activity of the mitochondrial DNA polymerase POLG by introducing the p.D274A mutation, or knockdown of the mitochondrial DNA helicase TWNK leads to severe impediment of mtDNA degradation. We do not observe similar effects when inactivating other known mitochondrial nucleases (EXOG, APEX2, ENDOG, FEN1, DNA2, MRE11, or RBBP8). Our data suggest that rapid degradation of linearized mtDNA is performed by the same machinery that is responsible for mtDNA replication, thus proposing novel roles for the participating enzymes POLG, TWNK, and MGME1

    Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease.

    Get PDF
    MGME1, also known as Ddk1 or C20orf72, is a mitochondrial exonuclease found to be involved in the processing of mitochondrial DNA (mtDNA) during replication. Here, we present detailed insights on the role of MGME1 in mtDNA maintenance. Upon loss of MGME1, elongated 7S DNA species accumulate owing to incomplete processing of 5' ends. Moreover, an 11-kb linear mtDNA fragment spanning the entire major arc of the mitochondrial genome is generated. In contrast to control cells, where linear mtDNA molecules are detectable only after nuclease S1 treatment, the 11-kb fragment persists in MGME1-deficient cells. In parallel, we observed characteristic mtDNA duplications in the absence of MGME1. The fact that the breakpoints of these mtDNA rearrangements do not correspond to either classical deletions or the ends of the linear 11-kb fragment points to a role of MGME1 in processing mtDNA ends, possibly enabling their repair by homologous recombination. In agreement with its functional involvement in mtDNA maintenance, we show that MGME1 interacts with the mitochondrial replicase PolgA, suggesting that it is a constituent of the mitochondrial replisome, to which it provides an additional exonuclease activity. Thus, our results support the viewpoint that MGME1-mediated mtDNA processing is essential for faithful mitochondrial genome replication and might be required for intramolecular recombination of mtDNA

    Heart failure after pressure overload in autosomal-dominant desminopathies: Lessons from heterozygous DES-p.R349P knock-in mice

    Get PDF
    Background Mutations in the human desmin gene (DES) cause autosomal-dominant and -recessive cardiomyopathies, leading to heart failure, arrhythmias, and AV blocks. We analyzed the effects of vascular pressure overload in a patient-mimicking p.R349P desmin knock-in mouse model that harbors the orthologue of the frequent human DES missense mutation p. R350P. Methods and results Transverse aortic constriction (TAC) was performed on heterozygous (HET) DES-p.R349P mice and wild-type (WT) littermates. Echocardiography demonstrated reduced left ventricular ejection fraction in HET-TAC (WT-sham: 69.5 ± 2.9%, HET-sham: 64.5 ± 4.7%, WTTAC: 63.5 ± 4.9%, HET-TAC: 55.7 ± 5.4%; p<0.01). Cardiac output was significantly reduced in HET-TAC (WT sham: 13088 ± 2385 Όl/min, HET sham: 10391 ± 1349Όl/min, WT-TAC: 8097 ± 1903Όl/min, HET-TAC: 5793 ± 2517Όl/min; p<0.01). Incidence and duration of AV blocks as well as the probability to induce ventricular tachycardias was highest in HET-TAC. We observed reduced mtDNA copy numbers in HET-TAC (WT-sham: 12546 ± 406, HET-sham: 13526 ± 781, WT-TAC: 11155 ± 3315, HET-TAC: 8649 ± 1582; p = 0.025), but no mtDNA deletions. The activity of respiratory chain complexes I and IV showed the greatest reductions in HET-TAC. Conclusion Pressure overload in HET mice aggravated the clinical phenotype of cardiomyopathy and resulted in mitochondrial dysfunction. Preventive avoidance of pressure overload/arterial hypertension in desminopathy patients might represent a crucial therapeutic measure

    Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis

    Get PDF
    Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts

    Is There Still Any Role for Oxidative Stress in Mitochondrial DNA-Dependent Aging?

    No full text
    Recent deep sequencing data has provided compelling evidence that the spectrum of somatic point mutations in mitochondrial DNA (mtDNA) in aging tissues lacks G &gt; T transversion mutations. This fact cannot, however, be used as an argument for the missing contribution of reactive oxygen species (ROS) to mitochondria-related aging because it is probably caused by the nucleotide selectivity of mitochondrial DNA polymerase γ (POLG). In contrast to point mutations, the age-dependent accumulation of mitochondrial DNA deletions is, in light of recent experimental data, still explainable by the segregation of mutant molecules generated by the direct mutagenic effects of ROS (in particular, of HO· radicals formed from H2O2 by a Fenton reaction). The source of ROS remains controversial, because the mitochondrial contribution to tissue ROS production is probably lower than previously thought. Importantly, in the discussion about the potential role of oxidative stress in mitochondria-dependent aging, ROS generated by inflammation-linked processes and the distribution of free iron also require careful consideration
    corecore