6,289 research outputs found

    Resistance effects due to magnetic guiding orbits

    Full text link
    The Hall and magnetoresistance of a two dimensional electron gas subjected to a magnetic field barrier parallel to the current direction is studied as function of the applied perpendicular magnetic field. The recent experimental results of Nogaret {\em et al.} [Phys. Rev. Lett. {\bf 84}, 2231 (2000)] for the magneto- and Hall resistance are explained using a semi-classical theory based on the Landauer-B\"{u}ttiker formula. The observed positive magnetoresistance peak is explained as due to a competition between a decrease of the number of conducting channels as a result of the growing magnetic field, from the fringe field of the ferromagnetic stripe as it becomes magnetized, and the disappearance of snake orbits and the subsequent appearance of cycloidlike orbits.Comment: 7 pages, 7 figure

    Snake states in graphene quantum dots in the presence of a p-n junction

    Full text link
    We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n, as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction, due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell shaped electron distribution. The results are presented as function of the junction parameters and the applied magnetic flux.Comment: 13 pages, 23 figures, to be appeared in Phys. Rev.

    The split-operator technique for the study of spinorial wavepacket dynamics

    Full text link
    The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagating wave functions describing Schr\"odinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure

    Exciton trapping in magnetic wire structures

    Full text link
    The lateral magnetic confinement of quasi two-dimensional excitons into wire like structures is studied. Spin effects are take into account and two different magnetic field profiles are considered, which experimentally can be created by the deposition of a ferromagnetic stripe on a semiconductor quantum well with magnetization parallel or perpendicular to the grown direction of the well. We find that it is possible to confine excitons into one-dimensional (1D) traps. We show that the dependence of the confinement energy on the exciton wave vector, which is related to its free direction of motion along the wire direction, is very small. Through the application of a background magnetic field it is possible to move the position of the trapping region towards the edge of the ferromagnetic stripe or even underneath the stripe. The exact position of this 1D exciton channel depends on the strength of the background magnetic field and on the magnetic polarisation direction of the ferromagnetic film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte

    Simplified model for the energy levels of quantum rings in single layer and bilayer graphene

    Full text link
    Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model, by solving the Dirac equation for a zero width ring geometry, i.e. by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a non-zero gap in the spectrum. Our minimal model gives insight in the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.Comment: To appear in Phys. Rev.

    Variations of the Mid-IR Aromatic Features Inside and Among Galaxies

    Get PDF
    We present the results of a systematic study of mid-IR spectra of Galactic regions, Magellanic HII regions, and galaxies of various types (dwarf, spiral, starburst), observed by the satellites ISO and Spitzer. We study the relative variations of the 6.2, 7.7, 8.6 and 11.3 micron features inside spatially resolved objects (such as M82, M51, 30 Doradus, M17 and the Orion Bar), as well as among 90 integrated spectra of 50 objects. Our main results are that the 6.2, 7.7 and 8.6 micron bands are essentially tied together, while the ratios between these bands and the 11.3 micron band varies by one order of magnitude. This implies that the properties of the PAHs are remarkably universal throughout our sample, and that the relative variations of the band ratios are mainly controled by the fraction of ionized PAHs. In particular, we show that we can rule out both the modification of the PAH size distribution, and the mid-infrared extinction, as an explanation of these variations. Using a few well-studied Galactic regions (including the spectral image of the Orion Bar), we give an empirical relation between the I(6.2)/I(11.3) ratio and the ionization/recombination ratio G0/ne.Tgas^0.5, therefore providing a useful quantitative diagnostic tool of the physical conditions in the regions where the PAH emission originates. Finally, we discuss the physical interpretation of the I(6.2)/I(11.3) ratio, on galactic size scales.Comment: Accepted by the ApJ, 67 pages, 70 figure

    Spin-orbit interaction induced singularity of the charge density relaxation propagator

    Full text link
    The charge density relaxation propagator of a two dimensional electron system, which is the slope of the imaginary part of the polarization function, exhibits singularities for bosonic momenta having the order of the spin-orbit momentum and depending on the momentum orientation. We have provided an intuitive understanding for this non-analytic behavior in terms of the inter chirality subband electronic transitions, induced by the combined action of Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit coupling. It is shown that the regular behavior of the relaxation propagator is recovered in the presence of only one BR or D spin-orbit field or for spin-orbit interaction with equal BR and D coupling strengths. This creates a new possibility to influence carrier relaxation properties by means of an applied electric field.Comment: 4 figure
    corecore