The charge density relaxation propagator of a two dimensional electron
system, which is the slope of the imaginary part of the polarization function,
exhibits singularities for bosonic momenta having the order of the spin-orbit
momentum and depending on the momentum orientation. We have provided an
intuitive understanding for this non-analytic behavior in terms of the inter
chirality subband electronic transitions, induced by the combined action of
Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit coupling. It is shown that
the regular behavior of the relaxation propagator is recovered in the presence
of only one BR or D spin-orbit field or for spin-orbit interaction with equal
BR and D coupling strengths. This creates a new possibility to influence
carrier relaxation properties by means of an applied electric field.Comment: 4 figure