64 research outputs found

    Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence

    Get PDF
    Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein – a well known virulence determinant of NDV – but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex

    Genome-wide gene expression analysis of anguillid herpesvirus 1

    Get PDF
    <p>Background: Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the first 6 hours of infection using reverse transcription quantitative PCR.</p> <p>Results: Four immediate-early genes – open reading frames 1, 6A, 127 and 131 – were identified on the basis of expression in the presence of a protein synthesis inhibitor and unique expression profiles during infection in the absence of inhibitor. All of these genes are located within or near the terminal direct repeats. The remaining 122 open reading frames were clustered into groups on the basis of transcription profiles during infection. Expression of these genes was also studied in the presence of a viral DNA polymerase inhibitor, enabling classification into early, early-late and late genes. In general, clustering by expression profile and classification by inhibitor studies corresponded well. Most early genes encode enzymes and proteins involved in DNA replication, most late genes encode structural proteins, and early-late genes encode non-structural as well as structural proteins.</p> <p>Conclusions: Overall, anguillid herpesvirus 1 gene expression was shown to be regulated in a temporal fashion, comparable to that of mammalian herpesviruses.</p&gt

    Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication.

    Get PDF
    Newcastle disease virus (NDV) was examined for its suitability as a vector for the expression and delivery of foreign genes for vaccination and gene therapy. A reporter gene encoding human secreted alkaline phosphatase (SEAP) was inserted as an additional transcription unit at four different positions in the NDV genome, between the NP and P, M and F, and HN and L genes and behind the L gene. Eight infectious recombinant NDV (rNDV) viruses, four in the non-virulent strain NDFL and four in the virulent derivative NDFLtag, were generated by reverse genetics. SEAP expression levels, replication kinetics and virus yield were examined. Replication kinetics of the rNDV viruses in primary chicken embryo fibroblasts showed that the insertion of an additional gene resulted in a delay in the onset of replication. This effect was most prominent when the gene was inserted between the NP and P genes. With the exception of the strain that carried the SEAP gene behind the L gene, all recombinant strains expressed high levels of SEAP, both in cell culture and in embryonated chicken eggs. In embryonated eggs, the rNDV viruses showed a 2.6- to 5.6-fold (NDFL) or 2.1- to 8.1-fold (NDFLtag) reduction in yield compared with the parent strains. These results show that foreign genes can be inserted at different positions in the NDV genome without severely affecting replication efficiency or virus yield

    Complete genome sequence and taxonomic position of anguillid herpesvirus 1

    Get PDF
    Eel herpesvirus or anguillid herpesvirus 1 (AngHV1) frequently causes disease in freshwater eels. The complete genome sequence of AngHV1 and its taxonomic position within the family Alloherpesviridae were determined. Shotgun sequencing revealed a 249 kbp genome including an 11 kbp terminal direct repeat that contains 7 of the 136 predicted protein-coding open reading frames. Twelve of these genes are conserved among other members of the family Alloherpesviridae and another 28 genes have clear homologues in cyprinid herpesvirus 3. Phylogenetic analyses based on amino acid sequences of five conserved genes, including the ATPase subunit of the terminase, confirm the position of AngHV1 within the family Alloherpesviridae, where it is most closely related to the cyprinid herpesviruses. Our analyses support a recent proposal to subdivide the family Alloherpesviridae into two sister clades, one containing AngHV1 and the cyprinid herpesviruses and the other containing Ictalurid herpesvirus 1 and the ranid herpesviruses

    Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain.

    Get PDF
    Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence of the fusion (F0) protein cleavage site. Full-length NDV cDNA clone pNDFL was used to generate infectious NDV with defined mutations in the F0 cleavage site (RRQRR downward arrow L, GRQGR downward arrow F, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F). All the mutants were viable and the mutations were maintained after virus propagation in embryonated eggs. The mutants showed single-cell infections on chicken embryo fibroblasts, which suggested that they were non-virulent. However, virulence tests in 1-day-old chickens resulted in an intracerebral pathogenicity index (ICPI) between 0 and 1.3. Moreover, virulent virus was isolated from chickens that had died in the virulence tests. Subsequent sequence analysis showed that the mutants RRQRR downward arrow L, RRQGR downward arrow F, RGQRR downward arrow F and RKQKR downward arrow F gave rise to the appearance of revertants containing the virulent cleavage site RRQ(K/R)R downward arrow F and an ICPI of 1.4 or higher. This indicated that reversion to virulence was caused by alteration of the amino acid sequence of the F0 cleavage site from a non-virulent to a virulent type. Furthermore, the ICPI of the revertants was higher than that of cDNA-derived strain NDFLtag, which has the same cleavage site, RRQRR downward arrow F (ICPI=1.3). NDFLtag(Pass), which was isolated from dead chickens after intracerebral inoculation of NDFLtag, also showed an increase in the ICPI from 1.3 to 1.5. This study proves that reversion to virulence occurs within non-virulent NDV populations and that the virulence may increase after one passage in chicken brai

    The P gene of Newcastle disease virus does not encode an accessory X protein

    Get PDF
    Many paramyxoviruses encode non-essential accessory proteins that are involved in the regulation of virus replication and inhibition of cellular antiviral responses. It has been suggested that the P gene mRNA of Newcastle disease virus (NDV) encodes an accessory protein ΒΏ the so-called X protein ΒΏ by translation initiation at a conserved in-frame AUG codon at position 120. Using a monoclonal antibody that specifically detected the P and X proteins, it was shown that an accessory X protein was not expressed in NDV-infected cells. Recombinant NDV strains in which the AUG was changed into a GCC (Ala) or GUC (Val) codon were viable but showed a reduction in virulence, probably because the amino acid change affected the function of the P and/or V protein

    Gentechnologie bij landbouwhuisdieren

    Get PDF
    Een overzicht van de ontwikkelingen van het kloneren van landbouwhuisdieren, met het oog op mogelijke consequenties voor beleid en regelgeving. Er wordt ingegaan op de techniek van dna modificatie, de invloed op veehouderij, fokkerij, praktijk, dierenwelzijn en -gezondheid, nationale veiligheid en regelgeving en de toekomstige ontwikkelingen in de nabije toekoms

    Immune escape mutants of highly pathogenic avian influenza H5N1 selected using polyclonal sera: Identification of key amino acids in the HA protein

    Get PDF
    Evolution of Avian Influenza (AI) viruses – especially of the Highly Pathogenic Avian Influenza (HPAI) H5N1 subtype – is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks) is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1), using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA) protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number

    Mutations in the M-Gene Segment Can Substantially Increase Replication Efficiency of NS1 Deletion Influenza A Virus in MDCK Cells

    Get PDF
    Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce high amounts of interferon (IFN). They are therefore considered as candidate viruses for live-attenuated influenza vaccines. Their attenuated replication is generally assumed to result from the inability to counter the antiviral host response, as delNS1 viruses replicate efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel passaged on IFN competent MDCK cells, which resulted in two strains that were able to replicate to high virus titres in MDCK cells due to adaptive mutations in especially the M-gene segment, but also the NP and NS gene segments. Most notable were clustered U-to-C mutations in the M segment of both strains and clustered A-to-G mutations in the NS segment of one strain, which presumably resulted from host cell mediated RNA editing. The M segment mutations in both strains changed the ratio of M1 to M2 expression, probably by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally enhanced virus replication, possibly through changes in the M1 distribution between the nucleus and the cytoplasm. Both adapted viruses induced equal levels of IFN as delNS1 virus. These results show that the increased replication of the adapted viruses is not primarily due to altered IFN induction, but rather related to changes in M1 expression or localization. The mutations identified in this paper may be used to enhance delNS1 virus replication for vaccine production
    • …
    corecore