Copyright © 2012, American Society for Microbiology. All Rights Reserved.

- 1 Mutations in the M gene segment can substantially increase replication efficiency of NS1
- 2 deletion influenza A virus in MDCK cells.
- 3
- 4 <u>Running title:</u> Role of M segment in delNS1 influenza replication.
- 5
- 6 Word count abstract: 243
- 7 Word count text: 6298
- 8
- 9 R. van Wielink^{a,b}, M.M. Harmsen^{a#}, D.E. Martens^b, B.P.H. Peeters^a, R.H. Wijffels^b, R.J.M.
- 10 Moormann^a
- 11
- ¹² ^a Central Veterinary Institute of Wageningen UR (CVI), P.O. Box 65, 8200 AB Lelystad, the
- 13 Netherlands
- ^b Wageningen University, Bioprocess Engineering, P.O. Box 8129, 6700 EV Wageningen, the
- 15 Netherlands
- [#] Corresponding author. Tel: +31 320 238436; fax: +31 320 238668. E-mail address:
- 17 <u>Michiel.Harmsen@wur.nl</u>

18

20 Abstract

21	Influenza viruses unable to express NS1 protein (delNS1) replicate poorly and induce
22	high amounts of interferon (IFN). They are therefore considered as candidate viruses for
23	live-attenuated influenza vaccines. Their attenuated replication is generally assumed to
24	result from the inability to counter the antiviral host response, as delNS1 viruses replicate
25	efficiently in Vero cells, which lack IFN expression. In this study, delNS1 virus was parallel
26	passaged on IFN competent MDCK cells, which resulted in two strains that were able to
27	replicate to high virus titres in MDCK cells due to adaptive mutations in especially the M-
28	gene segment, but also the NP and NS gene segments. Most notable were clustered U-to-C
29	mutations in the M segment of both strains and clustered A-to-G mutations in the NS
30	segment of one strain, which presumably resulted from host cell mediated RNA editing. The
31	M segment mutations in both strains changed the ratio of M1 to M2 expression, probably
32	by affecting splicing efficiency. In one virus, 2 amino acid substitutions in M1 additionally
33	enhanced virus replication, possibly through changes in the M1 distribution between the
34	nucleus and the cytoplasm. Both adapted viruses induced equal levels of IFN as delNS1
35	virus. These results show that the increased replication of the adapted viruses is not
36	primarily due to altered IFN induction, but rather related to changes in M1 expression or
37	localization. The mutations identified in this paper may be used to enhance delNS1 virus
38	replication for vaccine production.

39

40 Introduction

41	The non-structural (NS1) protein of influenza A virus is an antagonist of the cellular
42	antiviral response. Infection with virus either not encoding NS1 protein (delNS1) or encoding
43	a truncated NS1 protein results in high levels of type I interferons (IFN) such as IFN- α or IFN-
44	eta. Replication of such viruses is attenuated in IFN competent cell lines, indicating that the
45	NS1 protein is not essential for replication in such hosts (14). In vivo, viruses lacking a fully
46	functional NS1 protein induce IFN in the absence of detectable virus replication (12), which
47	are favourable conditions for use as live attenuated vaccines. The local release of IFN and
48	other cytokines and chemokines appears to be an excellent adjuvant that enhances
49	production of immunoglobulins and contributes to the activation of dendritic cells required
50	for antigen presentation (22, 31). DelNS1 candidate vaccines against influenza A and B have
51	been developed (35, 51) and initial trials in humans showed successful induction of antibody
52	responses (48). Apart from the use in vaccines, delNS1 viruses also show potential as
53	oncolytic agent (27) and viral expression vector (50).
54	NS1 is expressed at high levels directly after infection and facilitates virus replication
55	in many different ways (reviewed in (15)). Its antiviral properties are focused on reducing
56	the IFN mediated innate immune response and act at several levels. Cytoplasmic dsRNA and
57	5'-triphosphate-containing RNA are produced during influenza infection and recognized as
58	pathogenic patterns by antiviral proteins like retinoic-acid inducible gene I (RIG-I), dsRNA-
59	dependent protein kinase R (PKR) and 2'-5'-oligoadenylatesynthetase (OAS). NS1 binds both
60	dsRNA and RIG-I, and blocks the activation of PKR and OAS, thereby limiting the onset of
61	several pathways that lead to IFN induction (31). Other functions of NS1 are inhibition of
62	cellular pre-mRNA processing (including IFN pre-mRNA) and mRNA nuclear export (15).
63	Furthermore, NS1 regulates both viral genome replication and translation (49), splicing of M

64	segment mRNA (32), nuclear export of viral mRNA (13) and viral ribonucleoprotein (vRNP)
65	(49), and viral protein synthesis (7, 10). Recently it was found that NS1 binds the human
66	PAF1 transcription elongation complex (hPAF1C) by a histone-mimicking sequence, thereby
67	inhibiting the role of hPAF1C in the antiviral response (26). NS1 mRNA is transcribed from
68	the eighth vRNA segment. It is partially spliced to generate mRNA that encodes the nuclear
69	export protein (NEP) (15). In the nucleus of infected cells, NEP facilitates the export of the
70	vRNP complexes containing the viral genome segments to the cytoplasm, where assembly of
71	the viral components is completed before virus budding takes place (1). Independent from
72	vRNP export, NEP also regulates viral genome transcription and replication (33). During
73	development of delNS1 strains it is therefore essential to retain the NEP protein.
74	In cells and animals with a low or absent IFN response, such as Vero cells, STAT1 or
75	PKR knock-out mice, delNS1 virus replicates to high titres (8, 14, 20), whereas replication is
76	attenuated in MDCK cells and other IFN-competent hosts. When Vero cells are externally
77	stimulated with IFN- α before infection, delNS1 virus replication is however also attenuated
78	(12). Moreover, delNS1 only replicated efficiently in embryonated chicken eggs younger
79	than 8 days, when the host immune response is not yet fully developed (43). It is therefore
80	generally assumed that the inability of delNS1 virus to counter the cellular innate immune
81	response is the major cause for its attenuated phenotype (31). In addition to the unimpaired
82	IFN response, the absence of NS1 during influenza virus infection results in enhanced
83	apoptosis induction (41, 57). Activation of caspases, a group of cysteine proteases that play
84	an important role in apoptosis, results in cleavage of viral NP protein and thereby limits the
85	amount of viral protein available for assembly of viral particles (56). The antiviral effect of
86	apoptosis is therefore believed to contribute to the attenuated replication of delNS1 virus.
87	Inhibition of the apoptotic response is attributed to both the activation by NS1 of the

88	phosphatidylinositol 3-kinase (PI3K)-Akt signalling pathway, which is known to result in an
89	anti-apoptotic response (9, 55), as well as the inhibition of IFN. IFN sensitizes cells for
90	apoptosis (57) through its transcriptional induction of PKR (44) and activation of the
91	FADD/caspase-8 death signalling pathway (4). The role of apoptosis in influenza infection is,
92	however, still uncertain as several influenza proteins, including NS1, also exhibit pro-
93	apoptotic functions. Furthermore, influenza virus replication is impaired in the presence of
94	caspase inhibitors (52), which appears to be caused by retention of vRNA complexes in the
95	nucleus, preventing formation of progeny virus particles. A possible explanation for this
96	double role of NS1 in apoptosis regulation could be prevention of cell death by inhibition of
97	apoptosis early in the infection, followed by induction at a later stage (55). Ludwig et al. (24)
98	suggested that caspases enhance vRNP export from the nucleus later in the infection by
99	widening of the nuclear pores, thereby allowing diffusion of vRNP out of the nucleus.
100	Previously we showed that deINS1 virus can efficiently be propagated on a MDCK
101	cell line showing inducible expression of NS1 from a trans-complementing genomic gene
102	(46). A 500-fold increase in infectious virus titre was observed, even though the NS1 level
103	was 1000-fold lower than that in cells infected with wild-type (WT) virus. Furthermore,
104	apoptosis was reduced to similar levels as found in WT virus infected cells, whereas the
105	induction of IFN by delNS1 virus was not significantly reduced in these cells. Because of the
106	limited effect on IFN induction, we then hypothesized that the low yield of delNS1 virus on
107	normal MDCK cells could be caused by loss of another NS1 regulatory function rather than
108	the inability of the virus to interfere with the host cells antiviral response. In this paper we
109	increased the replication efficiency of delNS1 virus by adaptation to IFN competent MDCK
110	cells during serial passage. Next, we determined if the observed increase in virus yield was

- and partly characterized the mechanism that allowed the virus to efficiently replicate in the
- absence of the NS1 protein.

115 Materials and methods

116 Cell culture and virus strains

117	MDCK-SFS (Serum-Free Suspension) cells (47) were grown in suspension in
118	SFM4BHK21 medium (Hyclone, Waltham, MA), supplemented with 8 mM glutamine, 5 mg/L
119	phenol red and 1.5 g/L sodium bicarbonate, or adherent in serum-free UltraMDCK medium
120	(Lonza Biowhittaker, Basel, Switzerland) supplemented with 4 mM glutamine. Adherent
121	NS1Bon2 MDCK cells (46) were also grown in UltraMDCK medium, additionally
122	supplemented with 200 $\mu\text{g}/\text{ml}$ G418 (Promega, Fitchburg, WI) and 100 $\mu\text{g}/\text{ml}$ hygromycin B
123	(Clontech, Mountain View, CA). G418 and hygromycin were not used during virus infections.
124	Vero and Human embryo kidney (293T) cells were cultured in Glutamax medium (Invitrogen,
125	Carlsbad, CA) supplemented with 10% FBS. All culture media were provided with 100
126	units/ml penicillin and 100 $\mu g/ml$ streptomycin (Gibco). Cells were grown at 37°C and 5%
127	CO2. Suspension cells were grown in shaker flasks at 100 rpm. Cell density and viability were
128	determined with a Countess automated cell counter (Invitrogen).
129	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8)
129 130	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05
129 130 131	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6
129 130 131 132	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain
129 130 131 132 133	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain containing the complete NS segment was passaged once in 9-day old embryonated eggs
129 130 131 132 133 134	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain containing the complete NS segment was passaged once in 9-day old embryonated eggs after virus rescue, and is referred to as WT virus. The influenza delNS1 virus strain (46) used
129 130 131 132 133 134 135	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain containing the complete NS segment was passaged once in 9-day old embryonated eggs after virus rescue, and is referred to as WT virus. The influenza delNS1 virus strain (46) used for the adaptation to MDCK-SFS cells is isogenic to WT virus except for the NS gene
129 130 131 132 133 134 135 136	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain containing the complete NS segment was passaged once in 9-day old embryonated eggs after virus rescue, and is referred to as WT virus. The influenza delNS1 virus strain (46) used for the adaptation to MDCK-SFS cells is isogenic to WT virus except for the NS gene segment. It was previously passaged 10 times in 7-day old embryonated chicken eggs and is
129 130 131 132 133 134 135 136 137	All virus strains described in this paper are based on the A/PR/8/34 [H1N1] (PR8) strain in which the HA and NA genes are replaced by those from A/turkey/Turkey/1/05 H5N1 (46). The multi-basic cleavage site of H5 was replaced by that of a low pathogenic H6 subtype (46) and we refer to this HA gene segment as H5(6). This H5(6)N1 virus (46) strain containing the complete NS segment was passaged once in 9-day old embryonated eggs after virus rescue, and is referred to as WT virus. The influenza delNS1 virus strain (46) used for the adaptation to MDCK-SFS cells is isogenic to WT virus except for the NS gene segment. It was previously passaged 10 times in 7-day old embryonated chicken eggs and is referred to as delNS1 ^{EA} . Note that in the comparison of reassortant virus replication, protein

the tissue culture infective dose required to infect 50% (TCID₅₀) of MDCK cells, as previously 140 141 142 143 144 145 days post-infection (dpi). 146 147 Virus adaptation 148 149 150 151 152

139

described (47). All virus strains were propagated on the NS1 expressing NS1Bon2 MDCK cell line to generate virus seed stocks with high infectious virus titres (>7 log10 TCID₅₀/ml) prior to further viral characterization. For this purpose, NS1 expression was induced in this cell line 24 h before infection by addition of 1 μ g/ml doxycycline (Clontech) to the culture medium, followed by infection at multiplicity of infection (MOI) 0.01 and harvesting at 3 Two independent adaptation experiments were performed. In the first experiment, MDCK-SFS cells in suspension were infected with delNS1^{EA} at MOI 0.1. After 2-3 days the supernatant was collected and a 500-fold dilution was used for subsequent infection of fresh MDCK-SFS cells (unknown MOI). The virus was serially passaged 10 times in this manner. In the second adaptation experiment 5 serial passages were performed, starting 153 with infection of adherent MDCK-SFS cells with delNS1^{EA} at MOI 0.01. The infectious virus 154 titre was determined daily and the supernatant with the highest titre was used in 155

which we refer as delNS1. The infectious influenza virus titre was measured by determining

subsequent infection of fresh MDCK-SFS cells at MOI 0.01. The two adapted virus strains 156

- were cloned 3 times by limiting dilution on MDCK-SFS cells. Of each adapted strain, eight 157
- 158 clones were screened for virus replication on MDCK-SFS cells and one clone of each strain
- with high titre was selected and amplified on NS1Bon2 cells. The resulting strains are 159
- referred to as delNS1^{CA1} and delNS1^{CA2} respectively. 160

161

162 Plasmids

163	Ten plasmids containing single or multiple mutations found in delNS1 ^{CA1} and delNS1 ^{CA2}
164	(Table 1) were made. Viral RNA of delNS1 ^{CA1} and delNS1 ^{CA2} was isolated from seed virus and
165	HA and M gene segments were amplified by PCR, using primers with BsmBI restriction sites
166	(18). The resulting cDNAs were inserted in plasmid pHW2000 to create pROM33-pROM36.
167	Plasmids containing the mutated PB1 segments of delNS1 ^{CA1} and delNS1 ^{CA2} could not be
168	made. pROM16 was made by cloning a synthetic 675 bp BsrGI-NgoMIV fragment (GenScript
169	Corporation, Piscataway, NJ) containing mutation A1381G in pHW195 containing the PR8 NP
170	gene (17). Synthetic fragments with suitable BsmBI restriction sites comprising the complete
171	M segment with one or more of the CA2 mutations or the complete delNS1 NS segment
172	with all six CA1 mutations were inserted in pHW2000 to construct pROM13 and pROM51-
173	pROM54. All plasmid inserts were sequenced to ensure the absence of additional nucleotide
174	substitutions.

175

176 **Rescue of recombinant influenza virus**

To generate recombinant influenza virus, a mixture of 1.5 x 10^6 293T and 5 x 10^5 177 MDCK-SFS cells were transfected with equal amounts of the eight plasmids containing the 178 different gene segments, using Fugene HD (Roche Applied Science, Penzberg, Germany). 179 DelNS1 viruses were made using plasmids pHW191 (GenBank accession no. of vRNA coding 180 181 region: AB671295), pHW192 (EF467819), pHW193 (CY058518), pHW195 (EF467822), 182 pHW197 (EF190985) (17), pPolsaprib H5, pPolsaprib N1 and pHW NEP (46), whereas WT virus was made by replacing pHW NEP with pHW198, which contains the full length NS 183 segment. All other recombinant viruses were made by replacing one or more plasmids with 184 those in Table 1. At 24 h post-transfection (hpt) the transfection mixture was replaced by 185

186	Glutamax medium supplemented with 0.3 % bovine serum albumin (Chemie Brunschwig AG,
187	Basel, Switzerland) and 1 $\mu g/ml$ TPCK-trypsin (Sigma-Aldrich, St. Louis, MO). Virus was
188	harvested at 96 hpt. Virus stocks were generated using NS1Bon2 cells as described above
189	and virus identity was confirmed by sequence analysis. Reassortant delNS1 virus strains are
190	referred to as delNS1, followed by the mutated gene segment(s) it contains (Table 1) and
191	the adapted virus from which they originate (e.g. delNS1:[NP M] ^{CA1} , which contains the
192	mutated NP and M gene segments from delNS1 ^{CA1}).
193	
194	Virus genome sequencing

Viral RNA genomes were isolated using a high pure viral RNA isolation kit (Roche Applied Science). Universal influenza genome primer uni12 (18) was used for reverse transcriptase reactions with the Superscript III first strand synthesis system (Invitrogen), followed by segment specific PCR reactions with an Expanded high fidelity PCR system (Roche Applied Science). DNA sequencing was performed at Baseclear (Leiden, the Netherlands) and sequence analysis was done with Lasergene (DNASTAR Inc, WI).

202 Comparison of virus replication

To study the infection kinetics of the different virus strains, 10⁶ MDCK-SFS or Vero cells per well were incubated in 6-well plates, in 5 ml UltraMDCK medium containing 2 µg/ml trypsin-TPCK. Cells were infected in triplicate at MOI 0.01. Because of their ability to inactivate trypsin (19), Vero cells were supplied with additional trypsin-TPCK (1 µg/ml) at 24 and 48 hour post-infection (hpi). Supernatant was sampled at the indicated intervals and stored at -80°C before determining the infectious virus titre.

209	The main effect and interactions of the mutated gene segments on the infectious
210	virus titre was analysed by a repeated measures ANOVA with data from two infection
211	experiments, both performed in triplicate, using R statistical software package (R
212	Foundation for Statistical Computing, Vienna, Austria). Analysis was performed separately
213	for delNS1 ^{CA1} and delNS1 ^{CA2} reassortants datasets, with the mutated gene segments as
214	explanatory variables, the two infection experiments as random effects and delNS1 virus as
215	the baseline. Non-significant explanatory variables were excluded from the model.
216	
217	IFN reporter assay
218	MDCK-SFS cells were allowed to attach to the surface of eight 96-well plates for 1 h
219	(4.5 x 10^4 cells/well) and then transiently cotransfected with a reporter plasmid carrying a
220	firefly luciferase gene under control of the IFN- eta promoter (p125Luc, kindly provided by
221	Takashi Fujita, Kyoto University, Japan (54) and a Renilla luciferase control plasmid pGL4.73
222	(Promega), using Fugene HD. The next day, supernatant was removed and cells were
223	infected in triplicate (MOI 5) with WT, delNS1, delNS1 ^{CA1} , delNS1 ^{CA2} , delNS1:M ^{CA1} ,
224	delNS1:M ^{CA2} or delNS1:M ^{CA2.3} , or mock infected. One hour later, supernatant was replaced
225	with fresh medium. At 9, 12, 16, 20 and 24 hpi one plate was stored at -20°C without
226	supernatant. The firefly luciferase activity of all plates was measured with a GloMax-Multi
227	luminometer (Promega) using the Dual Luciferase Reporter Assay System (Promega) and
228	normalized to the Renilla luciferase activity.
229	
230	Apoptosis assay

231 MDCK-SFS cells were allowed to attach to the surface of six 96-well plates for 1 h (10^4 232 cells/well) and infected in sextuple with WT, delNS1, delNS1^{CA1} or delNS1^{CA2} virus (MOI 5),

- or mock infected. One hour later, supernatant was replaced with fresh medium. At 10, 14, 233 16, 19, 22 and 26 hpi, one plate was stored at -20°C without supernatant. Apoptosis was 234 determined by the activity of caspase-3 and caspase-7 using Caspase-Glo 3/7 Assay 235 (Promega). Caspase-Glo reagent, diluted 1:1 with PBS, was added to the frozen cells (50 236 μ l/well). After 1.5 h incubation at room temperature, the luminescence was measured with 237 238 a GloMax-Multi luminometer. 239 Western blot analysis of M1 and M2 expression 240 MDCK-SFS cells were allowed to attach to the surface of 24-well plates for 1 h (3.3 x 241 10⁵ cells/well) and infected (MOI 5) or mock infected, in triplicate. HEK293T cells (10⁶ 242 cells/well in 6-well plates) were transiently transfected in triplicate, using Fugene HD with 243 either 2 µg/well pHW195, pROM35, pROM36, pROM51, pROM52, pROM53, pROM54 (Table 244
- 245 1) or mock transfected. At 10 hpi or 48 hpt, cells were lysed with reducing NuPAGE sample
- 246 buffer containing in addition complete EDTA-free protease inhibitor cocktail (Roche).
- 247 Samples were sheared with a 21G needle, incubated for 10 min at 75°C and loaded onto
- 248 NuPAGE® Novex® 12% Bis-Tris precast gels (Invitrogen). Polypeptides were transferred to
- 249 polyvinylidenedifluoride membranes and detected by immunoblotting using monoclonal
- 250 mouse antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) against M1 (SC-57881, 0.2
- μ g/ml) or M2 (SC-32238, 0.4 μ g/ml). After subsequent incubation with peroxidase-

conjugated rabbit anti-mouse immunoglobulins (0.13 µg/ml; Dako, Glostrup, Denmark),

- 253 proteins were visualized with ECL plus (GE Healthcare, Buckinghamshire, UK) and quantified
- with a Storm840 imaging system and ImageQuant software (Molecular Dynamics,
- 255 Sunnyvale, CA). The M1/M2 band intensity ratio of each sample was calculated before
- 256 determining the mean ratio of the triplicate infections or transfections.

257

258 Subcellular M1 localization

259	MDCK-SFS cells were cultured in suspension (6.6 x 10^5 cells/ml) and infected with
260	WT, delNS1 or delNS1:M ^{CA2.3} in triplicate (MOI 5). At 6 and 10 hpi, 10 ⁶ cells were harvested
261	and cytoplasmic and nuclear extracts were prepared with the NE-PER nuclear and
262	cytoplasmic extraction kit (Thermo Fisher Scientific, Rockford, IL), according to the
263	manufacturer's description. However, complete EDTA-free protease inhibitor cocktail was
264	added to the extraction reagents. Cytoplasmic and nuclear extractions were subjected to
265	reducing SDS-PAGE and Western blot analysis as described above. Polypeptides were
266	detected by immunoblotting as described in the previous section with monoclonal mouse
267	antibodies (Santa Cruz Biotechnology) against lamin A/C (SC-7292, 0.2 $\mu g/ml),$ tubulin (SC-
268	5286, 0.2 $\mu\text{g}/\text{ml})$ or M1 (SC-57881, 0.2 $\mu\text{g}/\text{ml}).$ Cytoplasmic and nuclear specific proteins
269	tubulin and lamin A/C were used to assess the purity of nuclear and cytoplasmic extracts.
270	The amount of M1 protein was corrected for the extraction efficiency by either tubulin
271	(cytoplasmic extracts) or lamin A/C (nuclear extracts). The ratio of corrected nuclear M1 to
272	corrected cytoplasmic M1 was calculated before determining the mean ratio of the
273	triplicate infections.

275 Results

276 delNS1 virus adaptation

The egg-adapted influenza virus delNS1^{EA} replicated poorly in MDCK cells, reaching a 277 maximum infectious virus titre that was 10⁴-fold lower than that of WT virus (Fig. 1B). To 278 investigate whether the virus was able to overcome the negative effect of the NS1 deletion 279 by acquiring compensating mutations we serially passaged delNS1^{EA} virus on MDCK-SFS cells 280 in two independent adaptation experiments (see Materials and Methods). In the first cell 281 adaptation experiment (CA1), virus was blindly passaged 10 times. In the second experiment 282 283 (CA2), virus taken from the time point where the titre was maximal was used to infect cells in the next passage at a controlled MOI of 0.01. Both adaptation experiments on MDCK-SFS 284 cells resulted in virus populations with increased replication rate and increased maximum 285 titres compared to the parent strain. The maximum virus titre of strain delNS1^{CA2} increased 286 287 during the first 3 to 4 passages, but did not increase further during the fifth passage (Fig. 288 1A). To obtain clonal virus, the adapted strains were further cultured during 3 limiting dilution steps on MDCK-SFS cells. The infectious virus titres of the resulting cloned cell-289 adapted virus strains deINS1^{CA1} and deINS1^{CA2} were about 250-fold higher than the parental 290 delNS1^{EA} virus titre, but remained 25-fold lower than the WT virus titre (Fig. 1B). In Vero 291 cells, deINS1^{EA} was only weakly attenuated in comparison to the WT virus (Fig. 1C). 292 Adaptation of delNS1 virus to MDCK-SFS cells caused only a small increase in delNS1^{CA2} virus 293 replication in Vero cells whereas delNS1^{CA1} virus replication was comparable to the parental 294 delNS1 virus (Fig. 1C). Thus, the increase in virus replication due to virus adaptation is much 295 higher during propagation on MDCK-SFS cells as compared to Vero cells. 296

297

298 Sequence analysis of adapted virus

299	All eight gene segments of the delNS1 ^{CA1} and delNS1 ^{CA2} virus strains and their
300	parental delNS1 ^{EA} strain were sequenced (Table 2). No mutations were found in the PB2, PA
301	and NA segments. The delNS1 ^{EA} virus contained two mutations in PB1 and one in HA with all
302	mutations present in approximately 50% of the virus population. These mutations were
303	silent and must have arisen during the passaging in eggs. Both PB1 mutations were present
304	in both cell adapted viruses, whereas the HA mutation was only present in delNS1 ^{CA2} virus.
305	Due to the presence of mutations in the delNS1 ^{EA} virus, a non-adapted delNS1 virus was
306	used in the comparison of reassortant virus replication, protein expression, apoptosis, and
307	IFN-induction experiments. We refer to this virus as delNS1.
308	Compared to delNS1 ^{EA} virus, delNS1 ^{CA1} virus had 13 additional mutations, including a
309	silent mutation in PB1, F257L in HA, R446G in NP, four silent U-to-C mutations in M, and six
310	A-to-G mutations in the delNS1 segment. Three of the NS segment mutations resulted in the
311	amino acid substitutions Y41C, M52V and I76V in the NEP protein. The first 4 A-to-G
312	mutations in the NS ^{CA1} segment are located on the part that normally encodes NS1,
313	resulting in two amino acid substitutions at the NS1 C-terminal. These mutations may be
314	disadvantageous to the WT virus and removal of the NS1 ORF therefore increased the
315	freedom of this segment to acquire mutations. DelNS1 ^{CA2} virus had 6 additional mutations
316	that were all located in the M segment. These mutations started to appear simultaneously
317	at passage 4 and had increased at passage 5 (Fig. 2A). Again, these 6 mutations were all U-
318	to-C mutations, two of which resulted in amino acid changes V97A and Y100H in M1.
319	Notably, all mutations on the M and NS segments are clustered in regions of 50-100
320	nucleotides. Both M segment mutation clusters are located on a region of the M1 mRNA
321	that is removed by splicing to generate the M2 mRNA and thus do not affect M2 mRNA

322 structure (Fig. 2B). Apart from the two silent mutations in PB1 which were already present

in the initial delNS1^{EA} virus, both parallel adaptations did not lead to identical mutations.

324

325 Infection with delNS1 viruses containing mutated gene segments

The effect of each mutated gene segment on the infectious virus titre, and possible 326 327 interactions between the gene segments was determined by employing a full-factorial analytical approach. MDCK-SFS cells were infected with reassortant delNS1 viruses 328 consisting of all 15 possible combinations of delNS1^{CA1} virus HA, NP, M and NS gene 329 segments, or the 3 possible combinations of delNS1^{CA2} virus HA and M gene segments (Fig. 330 3A). All reassortant viruses contained the WT PB1 segment, as we were unable to generate 331 plasmids containing the mutated PB1 segments. Infectious virus titres were examined using 332 a repeated measures ANOVA, so as to determine the relative importance of the gene 333 334 segments, and possible interactions between gene segments, on virus replication. Segments with significant effect on the delNS1^{CA1} virus titre were NS^{CA1}, M^{CA1} and NP^{CA1}, with 335 coefficients of respectively 0.68, 0.76 and 0.50 (all p<0.001). These coefficients specify the 336 average increase of the virus titre in log¹⁰ TCID₅₀/ml, when the mutated segment was 337 included in the delNS1 reassortant strain. There was also an interaction effect between the 338 mutated M and NP segments of -0.36 (p<0.05), which indicated an average decrease in virus 339 titre when the mutated M and NP segments were combined in the delNS1 virus. Thus, the 340 enhanced delNS1^{CA1} virus replication was the effect of these three mutated gene segments 341 together. The enhanced replication of delNS1^{CA2} was determined by the mutated M 342 segment alone (Fig. 3A). This observation was confirmed by statistical analysis, which 343 appointed a coefficient of 2.0 (p<0.001) to M^{CA2}, indicating that the 100-fold increase in 344 virus titre was solely determined by the M segment mutations. Reassortant virus containing 345

all mutated gene segments (delNS1:[HA NP M NS]^{CA1} and delNS1:[HA M]^{CA2}) replicated
equally well as the virus from which their segments originated, delNS1^{CA1} and delNS1^{CA2},
indicating that the mutated PB1 gene segments did not contribute to the enhanced virus
replication.

Because the M segment plays a major role in increased replication of both adapted 350 351 viruses, we further focused on the mechanism by which mutations in this segment could overcome the decreased replication in the absence of NS1. To determine which individual 352 M^{CA2} mutation was responsible for virus titre increase, four additional mutant virus strains 353 were made containing either the V97A or Y100H mutation, the combination of V97A and 354 Y100H, or the remaining four silent mutations (Fig. 3B). When compared to delNS1, the two 355 strains with single amino acid substitutions did not replicate more efficiently. However, 356 when V97A and Y100H were combined in delNS1:M^{CA2.3}, a 50-fold increase in virus titre was 357 observed. Furthermore, the four silent mutations increased the virus yield approximately 358 10-fold, as indicated by the comparison of delNS1 to delNS1:M^{CA2.4} and delNS1:M^{CA2.3} to 359 delNS1^{CA2}. Interestingly, when introduced into the WT virus, the M^{CA2} segment decreased 360 replication (Fig. 3B). 361

362

³⁶³ Interferon-β and apoptosis induction by cell adapted delNS1 virus

364To assess if viral adaptation affected IFN-β expression, cells were transfected with a365firefly luciferase reporter gene under control of an IFN-β promoter and subsequently366infected with WT or different delNS1 virus strains at high MOI. The low luciferase activity of367cells infected with WT virus as compared to cells infected with delNS1 virus indicates368inhibition of IFN-β induction by NS1 (Fig. 4A). Both cell-adapted viruses (Fig. 4A) as well as369delNS1 reassortant virus containing either M^{CA1}, M^{CA2} or the M segment containing the two

- 370 CA2 amino acid mutations (Fig. 4B) did not show lower IFN induction than parental delNS1 virus (Fig. 4A). This indicates that the increase in virus replication due to virus adaptation 371 was not caused by a lower IFN induction. 372 The induction of apoptosis was determined by measuring the activity of caspase-3 373 374 and caspase-7, two proteases that are induced late in the apoptosis pathway. Again, the 375 inhibiting effect of NS1 was visible as little caspase activity was seen in cells infected with the WT virus in comparison to cells infected with delNS1 viruses. Both cell-adapted 376 delNS1^{CA1} and delNS1^{CA2} viruses similarly induced caspase activity to a level that is far higher 377 378 than observed with WT virus (Fig. 4C). 379 Effect of M segment mutations on M1 and M2 protein expression 380 To determine if the M segment mutations affected splicing of the M1 mRNA (Fig. 2B) 381 382 we measured the ratio of M1 and M2 protein expression in cells at 10 hpi by Western blot analysis (Fig. 5A). The M1 protein of all Y100H mutant viruses (delNS1:M^{CA2}, delNS1:M^{CA2.2} 383 and delNS1:M^{CA2.3}) migrated slightly slower in SDS-PAGE than that of the other virus strains 384 (Fig. 5A, lanes 4, 6 and 7 respectively). Slight changes in mobility in SDS-PAGE due to amino 385 acid changes that affect protein charge, such as Y100H, have been observed before (30). 386 Cells infected with delNS1 virus (Fig. 5A, lane 2) appeared to express more M2 387
- 388 protein than WT virus infected cells (Fig. 5A, lane 1). This difference was consistently
- observed in several experiments, even though the difference in M1/M2 ratio was not
- 390 statistically significant from that of the WT virus (Fig. 5B). Infection with virus containing the
- ³⁹¹ mutated M segments, delNS1:M^{CA1} (Fig. 5A, lane 3) and M^{CA2} (Fig. 5A, lane 4), resulted in an
- 392 M1/M2 ratio that was 2- and 3-fold higher, respectively, than that of delNS1 (Fig. 5B). Virus
- containing only the single or double M1 amino acid mutations (delNS1:M^{CA2.1}, M^{CA2.2} and

M^{CA2.3}, Fig. 5A lanes 5, 6 and 7) showed an M1/M2 ratio similar to delNS1, whereas 394 deINS1:M^{CA2.4} virus (containing the 4 silent M^{CA2} mutations) showed a 2-fold increase (Fig. 395 5A lane 8 and Fig. 5B). The effect of the mutations on M1 and M2 expression was confirmed 396 by transfection of HEK293T cells with plasmids encoding the different M segments (Fig. 5C). 397 The M1/M2 ratio of cells transfected with WT M segment (0.35; Fig. 5D), is comparable to 398 399 that of delNS1 infected cells (0.42; Fig. 5B). The M1/M2 expression ratio was higher with segments containing the original mutations acquired during the adaptation (M^{CA1} and M^{CA2}) 400 and with the M^{CA2} segment containing the four silent mutations (M^{CA2.4}; Fig. 5C lanes 3, 4 401 and 8), but not with the M^{CA2} segments containing one or both of the non-silent mutations 402 (Fig. 5C lane 5, 6 and 7). Taken together, these results show that both cell-adapted viruses 403 acquired mutations that increased the M1/M2 protein ratio in infected cells. 404

405

406 Effect of M1 amino acid substitutions on subcellular localization

The M1 mutations V97A and Y100H present in delNS1^{CA2} are located close to the NLS 407 at position 101-105 (Fig. 2C). To determine whether they affected the subcellular 408 localization of M1 protein, cells were infected with WT, delNS1 or delNS1:M^{CA2.3} virus and 409 the nucleoplasm and cytoplasm was isolated early (6 hpi) and late (10 hpi) in the infection 410 process. The level of M1 present in both compartments was then determined by Western 411 412 blot analysis and quantified by phosphorimager densitometry (Fig. 6A and B). 413 At 6 hpi, the ratio of nuclear to cytoplasmic M1 was comparable between WT and deINS1 virus infected cells (Fig. 6B). Four hours later, this ratio remained constant in WT 414 virus infected cells whereas it was 4-fold lower in delNS1 virus infected cells, mainly due to a 415 decrease in nuclear M1. Thus, NS1 appears to affect the concentration of M1 in the nucleus 416 late but not early in the infection. The mutant virus containing only M1 amino acid 417

substitutions V97A and Y100H showed a higher ratio at early stages, although this did not
significantly differ from the ratio of the other two viruses. At 10 hpi nuclear M1 was not
detectable anymore, thereby reducing the localization ratio below that of delNS1 infected
cells.

423 Discussion

424	The low yield of delNS1 virus on MDCK cells is assumed to be caused by the inability
425	of this virus to inhibit the antiviral host response (14). In this study, we obtained two delNS1
426	influenza virus variants that replicated to 250-fold higher infectious virus titres (TCID $_{50}$) after
427	two parallel, serial passages on MDCK cells. However, the increase in virus replication did
428	not correlate with a lower induction of IFN or apoptosis, which is linked to IFN induction (4,
429	44, 57). These results thus indicate that IFN induction may not be the only cause of limited
430	delNS1 virus replication in MDCK cells. Several recent studies already suggest that IFN has a
431	minor effect on influenza replication in MDCK cells because canine myxovirus resistance
432	proteins lack anti-influenza activity (38) and secreted IFN is proteolytically degraded by
433	trypsin, which is normally present during influenza production on MDCK cells (39).
434	Furthermore, delNS1 virus titres could be increased by recombinant NS1 expression,
435	without lowering IFN induction (46), indicating that IFN induction in MDCK may play a less
436	important role than generally assumed.
437	The two adapted viruses contained a high frequency of either A-to-G or U-to-C
438	substitutions (19 out of 22) that occur mostly (16 out of 22) in three clusters in M^{CA1} , M^{CA2}
439	and NS ^{CA1} gene segments. Furthermore, all mutations in M ^{CA2} appeared to be acquired at
440	the same time. Taken together, this suggests that these substitutions result from
441	hyperediting by adenosine deaminases acting on RNA (ADAR), which cause A-to-G
442	substitutions in RNA (37). Hyperediting of the influenza genome by ADAR has previously
443	been reported (42). The occurrence of both A-to-G and U-to-C substitutions can be
444	explained by hyperediting of the positive sense cRNA as well as the negative sense vRNA,
445	respectively. Interestingly, ADAR1 is induced by IFN and is believed to have an antiviral role
446	during influenza infection (37). Furthermore, NS1 interacts with ADAR1, suggesting that it

447	inhibits ADAR1 function (28). Possibly, the high level of IFN induction and the absence of
448	NS1 in delNS1 infected cells resulted in more RNA hyperediting.
449	By sequence analysis of the two adapted viruses and subsequent analysis of
450	reassortant viruses generated by reverse genetics, we showed that six substitutions in the M
451	segment were responsible for the increase in delNS1 ^{CA2} virus titres. The increase in
452	delNS1 ^{CA1} viral titres was caused by substitutions in the NP, M and NS segments, where the
453	M segment was most important. Previously, adaptation to Vero cells yielded an influenza B
454	delNS1 virus with increased titres due to M1 amino acid substitution M86V (51). This is in
455	striking contrast to the many studies on the adaptation of WT virus originating from eggs or
456	clinical specimens to propagation in mammalian hosts or cell lines, which showed that
457	adaptive mutations predominantly accumulated in the HA segment or segments encoding
458	the RNA polymerase (PB1, PB2 and PA), which is assumed to be caused by adaptation to the
459	different host species (16, 29, 34, 45). This suggests that the preferential isolation of M-
460	segment mutations upon delNS1 virus adaptation compensates for the absence of the NS1
461	protein rather than the replication in a different host species. This conclusion is further
462	supported by our observation that the introduction of the M^{CA2} gene segment into a WT
463	virus (that produces NS1) does not enhance, but even reduces, viral replication.
464	Therefore, we focused on the mechanism by which the M segment mutations could
465	improve replication in the absence of NS1. The M segment encodes the M1 matrix protein
466	from unspliced M1 mRNA, whereas the M2 ion channel protein is transcribed from a spliced
467	mRNA (Fig. 2B). A second splice product, mRNA ₃ , can arise from an alternative 5' splice site
468	and encodes a hypothetical and as yet undiscovered 9 amino acid peptide (21). It was
469	previously shown that NS1 expression limits splicing, including that of the M segment-
470	derived mRNA (23, 32), resulting in a higher ratio of M1 to M2 mRNA. Furthermore, M1

471	expression is reduced in MDCK cells infected with influenza virus expressing truncated NS1
472	(8, 10). We therefore measured M1 and M2 expression in infected cells and calculated the
473	M1/M2 expression ratio, assuming that this would be dependent on the efficiency of M1
474	mRNA splicing. Indeed, cells infected with WT virus showed a higher M1/M2 expression
475	ratio than delNS1 infected cells. The M ^{CA1} and M ^{CA2} segments showed significantly increased
476	M1/M2 expression ratios as compared to the WT M segment, both when expressed using a
477	delNS1 virus backbone and after transfection of cells with M gene-encoding plasmids. The
478	M^{CA1} segment contains four silent mutations whereas the M^{CA2} segment contains four silent
479	and two non-silent mutations. By generating novel reassortant viruses we could show that
480	the altered M1/M2 expression ratio of delNS1 ^{CA2} was due to the 4 silent mutations.
481	Furthermore, these silent M ^{CA2} mutations caused an increase in delNS1 viral titres, although
482	not to the same extent as a segment that also contains the two non-silent M segment
483	mutations. The silent M^{CA1} and M^{CA2} mutations lay in a region that contains the major
484	determinants for M segment splicing (3). Thus it is likely that both these sets of mutations
485	lower M1 mRNA splicing efficiency in a similar manner by restoring a balance that was
486	disturbed due to the absence of NS1. Such a mechanism, aimed at restoration of M1 splicing
487	efficiency may also explain why introduction of the M ^{CA2} segment into a backbone of virus
488	that produces NS1 (WT virus) reduces replication efficiency. Surprisingly, NS1 does not
489	affect the M1/M2 expression ratio in Vero cells (36). Furthermore, absence of NS1 causes
490	reduced M1 expression in MDCK but not in Vero cells (8). Taken together with our results
491	this suggests that the improved replication of delNS1 virus in Vero cells as compared to
492	MDCK cells is not only determined by the lack of an IFN response, but also by the ability of
493	Vero cells to retain efficient M segment splicing and M1 expression in the absence of NS1.

494	The major part of the increase in delNS1 ^{CA2} virus titre resulted from the combination
495	of M1 amino acid substitutions V97A and Y100H. As single substitutions these mutations did
496	not affect replication efficiency. Mutation V97A was previously introduced into the
497	A/WSN/33 [H1N1] strain (which is able to express NS1) and resulted in a 100-fold lower
498	virus yield (6). Residues 97 and 100 are located on the helix 6 (H6) domain, a positively
499	charged surface region between amino acids 91 to 105 of M1 (40). The influenza B M1
500	M86V mutation that enhanced delNS1 virus replication (51) is located near this region. The
501	exact mechanism by which this mutation affected viral replication was not further
502	investigated. The H6 domain has multiple functional motifs, including a nuclear localization
503	signal (NLS) between amino acids 101-105 (Fig. 2C) that binds to cellular importin- $lpha$ (5).
504	Inside the nucleus, M1 binds to the vRNP complex, after which NEP can bind to the NLS of
505	M1 (1). The vRNP-M1-NEP complex can then be exported to the cytoplasm were virus
506	particles are assembled at the cell membrane (1). The localization of V97A and Y100H within
507	the H6 domain suggests that they could affect M1 binding to NEP. Furthermore, Y100H is
508	located immediately next to the NLS and may also affect importin- α binding, as described
509	earlier for a mutation next to a NLS in PB2 (29). In this manner these mutations could affect
510	M1 (and vRNP) subcellular distribution. The absence of NS1 during infection resulted in
511	decreased levels of M1 in the nucleus at late stages of the infection. This may result from
512	increased apoptosis induction by delNS1 virus as widening of the nuclear pores (11) allows
513	diffusion of vRNPs out of the nucleus (24). Amino acid changes V97A and Y100H resulted in
514	full depletion of M1 in the nucleus at 10 hpi, thus these mutations do not restore the M1
515	localization balance in delNS1 towards infection in the presence of NS1. It is therefore
516	difficult to speculate how these two mutations can cause a 50-fold increase in virus titre.

517	Interestingly, the increased viral titres of delNS1 ^{CA1} virus were in part due to six
518	nucleotide substitutions causing three amino acid substitutions in the NEP protein.
519	Especially substitution I76V which is located within the domain that binds to M1 (1) could -
520	similarly to the M1 mutations described above - affect vRNP nuclear export. Similar effects
521	of M1 and NEP mutations that affect their interaction were observed earlier in WT virus.
522	Mutations of NEP glutamate residues 67, 74 and 75 that bind M1, decreased vRNP content
523	of viral particles and caused morphological virion changes similar to those that occur in virus
524	particles with mutated positively charged M1 residues 95, 98, 101 and 102 that bind NEP (2,
525	6).
526	In this paper we showed that mutations in the M segment can enhance the
527	replication of delNS1 virus due to both non-silent and silent mutations, the latter
528	presumably affecting the M1 mRNA splicing efficiency. These findings contradict the
529	previous suggestion that the restricted replication of this virus in MDCK cells is primarily due
530	to the inability to inhibit the IFN response. The mutations described may have direct
531	applications as they, for example, allow the development of delNS1 based viruses with
532	improved replication efficiency, thereby making it possible to produce such a virus in other
533	cell lines than Vero cells (35) or NS1 expressing MDCK cells (46). Moreover, these mutations
534	may be combined with the G3A and C8U mutations in HA vRNA, which increased the HA
535	expression level of a live attenuated NS1 truncated influenza vaccine strain (25). However, it
536	will be necessary to determine the effect of these mutations on vaccine safety and efficacy.
537	
538	Acknowledgements
539	This research was funded by the Impulse Veterinary Avian Influenza Research in the
540	Netherlands program of the Economic Structure Enhancement Fund.

- 541 The authors thank M. Vernooij, O. de Leeuw, E. de Boer, D. van Zoelen and G.
- 542 Tjeerdsma (CVI) for their help with the development of various assays and technical
- assistance, and A. Dekker (CVI) for his help with the statistical data analysis.

544

546 References

547	1.	Akarsu, H., W. P. Burmeister, C. Petosa, I. Petit, C. W. Muller, R. W. Ruigrok, and F.
548		Baudin. 2003. Crystal structure of the M1 protein-binding domain of the influenza A
549		virus nuclear export protein (NEP/NS2). Embo J 22: 4646-4655.
550	2.	Akarsu, H., K. Iwatsuki-Horimoto, T. Noda, E. Kawakami, H. Katsura, F. Baudin, T.
551		Horimoto, and Y. Kawaoka. 2011. Structure-based design of NS2 mutants for
552		attenuated influenza A virus vaccines. Virus Res 155:240-248.
553	3.	Backstrom Winquist, E., S. Abdurahman, A. Tranell, S. Lindstrom, S. Tingsborg, and
554		S. Schwartz. 2011. Inefficient splicing of segment 7 and 8 mRNAs is an inherent
555		property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated
556		expression of NS1 protein. Virology 422: 46-58.
557	4.	Balachandran, S., P. C. Roberts, T. Kipperman, K. N. Bhalla, R. W. Compans, D. R.
558		Archer, and G. N. Barber. 2000. Alpha/beta interferons potentiate virus-induced
559		apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J Virol
560		74: 1513-1523.
561	5.	Boulo, S., H. Akarsu, R. W. Ruigrok, and F. Baudin. 2007. Nuclear traffic of influenza
562		virus proteins and ribonucleoprotein complexes. Virus Res 124: 12-21.
563	6.	Burleigh, L. M., L. J. Calder, J. J. Skehel, and D. A. Steinhauer. 2005. Influenza a
564		viruses with mutations in the m1 helix six domain display a wide variety of
565		morphological phenotypes. J Virol 79: 1262-1270.
566	7.	de la Luna, S., P. Fortes, A. Beloso, and J. Ortin. 1995. Influenza virus NS1 protein
567		enhances the rate of translation initiation of viral mRNAs. J Virol 69:2427-2433.
568	8.	Egorov, A., S. Brandt, S. Sereinig, J. Romanova, B. Ferko, D. Katinger, A. Grassauer,
569		G. Alexandrova, H. Katinger, and T. Muster. 1998. Transfectant influenza A viruses

570 with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 72:6437-6441. 571 Ehrhardt, C., T. Wolff, S. Pleschka, O. Planz, W. Beermann, J. G. Bode, M. Schmolke, 572 9. and S. Ludwig. 2007. Influenza A virus NS1 protein activates the PI3K/Akt pathway to 573 mediate antiapoptotic signaling responses. J Virol 81:3058-3067. 574 575 10. Enami, K., T. A. Sato, S. Nakada, and M. Enami. 1994. Influenza virus NS1 protein stimulates translation of the M1 protein. J Virol 68:1432-1437. 576 11. Faleiro, L., and Y. Lazebnik. 2000. Caspases disrupt the nuclear-cytoplasmic barrier. J 577 Cell Biol 151:951-959. 578 12. Ferko, B., J. Stasakova, J. Romanova, C. Kittel, S. Sereinig, H. Katinger, and A. 579 Egorov. 2004. Immunogenicity and protection efficacy of replication-deficient 580 influenza A viruses with altered NS1 genes. J Virol 78:13037-13045. 581 582 13. Fortes, P., A. Beloso, and J. Ortin. 1994. Influenza virus NS1 protein inhibits premRNA splicing and blocks mRNA nucleocytoplasmic transport. Embo J 13:704-712. 583 14. Garcia-Sastre, A., A. Egorov, D. Matassov, S. Brandt, D. E. Levy, J. E. Durbin, P. 584 Palese, and T. Muster. 1998. Influenza A virus lacking the NS1 gene replicates in 585 interferon-deficient systems. Virology 252:324-330. 586 Hale, B. G., R. E. Randall, J. Ortin, and D. Jackson. 2008. The multifunctional NS1 587 15. 588 protein of influenza A viruses. J Gen Virol 89:2359-2376. 589 16. Herfst, S., E. J. Schrauwen, M. Linster, S. Chutinimitkul, E. de Wit, V. J. Munster, E. M. Sorrell, T. M. Bestebroer, D. F. Burke, D. J. Smith, G. F. Rimmelzwaan, A. D. 590 Osterhaus, and R. A. Fouchier. 2012. Airborne transmission of influenza A/H5N1 591 virus between ferrets. Science 336:1534-1541. 592

5	593	17.	Hoffmann, E., S. Krauss, D. Perez, R. Webby, and R. G. Webster. 2002. Eight-plasmid
5	594		system for rapid generation of influenza virus vaccines. Vaccine 20: 3165-3170.
5	595	18.	Hoffmann, E., J. Stech, Y. Guan, R. G. Webster, and D. R. Perez. 2001. Universal
5	596		primer set for the full-length amplification of all influenza A viruses. Arch Virol
5	597		146: 2275-2289.
5	598	19.	Kaverin, N. V., and R. G. Webster. 1995. Impairment of multicycle influenza virus
5	599		growth in Vero (WHO) cells by loss of trypsin activity. J Virol 69:2700-2703.
e	500	20.	Kochs, G., I. Koerner, L. Thiel, S. Kothlow, B. Kaspers, N. Ruggli, A. Summerfield, J.
e	501		Pavlovic, J. Stech, and P. Staeheli. 2007. Properties of H7N7 influenza A virus strain
e	502		SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol 88:1403-
e	503		1409.
e	604	21.	Lamb, R. A., C. J. Lai, and P. W. Choppin. 1981. Sequences of mRNAs derived from
e	605		genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for
e	606		overlapping proteins. Proc Natl Acad Sci U S A 78: 4170-4174.
e	507	22.	Le Bon, A., G. Schiavoni, G. D'Agostino, I. Gresser, F. Belardelli, and D. F. Tough.
e	508		2001. Type i interferons potently enhance humoral immunity and can promote
e	509		isotype switching by stimulating dendritic cells in vivo. Immunity 14: 461-470.
e	510	23.	Lu, Y., X. Y. Qian, and R. M. Krug. 1994. The influenza virus NS1 protein: a novel
e	511		inhibitor of pre-mRNA splicing. Genes Dev 8:1817-1828.
e	512	24.	Ludwig, S., S. Pleschka, O. Planz, and T. Wolff. 2006. Ringing the alarm bells:
e	513		signalling and apoptosis in influenza virus infected cells. Cell Microbiol 8:375-386.
e	514	25.	Maamary, J., N. Pica, A. Belicha-Villanueva, Y. Y. Chou, F. Krammer, Q. Gao, A.
e	515		Garcia-Sastre, and P. Palese. 2012. Attenuated influenza virus construct with
e	516		enhanced hemagglutinin protein expression. J Virol 86:5782-5790.

617	26.	Marazzi, I., J. S. Ho, J. Kim, B. Manicassamy, S. Dewell, R. A. Albrecht, C. W. Seibert,
618		U. Schaefer, K. L. Jeffrey, R. K. Prinjha, K. Lee, A. Garcia-Sastre, R. G. Roeder, and A.
619		Tarakhovsky. 2012. Suppression of the antiviral response by an influenza histone
620		mimic. Nature 483: 428-433.
621	27.	Muster, T., J. Rajtarova, M. Sachet, H. Unger, R. Fleischhacker, I. Romirer, A.
622		Grassauer, A. Url, A. Garcia-Sastre, K. Wolff, H. Pehamberger, and M. Bergmann.
623		2004. Interferon resistance promotes oncolysis by influenza virus NS1-deletion
624		mutants. Int J Cancer 110:15-21.
625	28.	Ngamurulert, S., T. Limjindaporn, and P. Auewaraku. 2009. Identification of cellular
626		partners of Influenza A virus (H5N1) non-structural protein NS1 by yeast two-hybrid
627		system. Acta Virol 53: 153-159.
628	29.	Ping, J., L. Keleta, N. E. Forbes, S. Dankar, W. Stecho, S. Tyler, Y. Zhou, L. Babiuk, H.
629		Weingartl, R. A. Halpin, A. Boyne, J. Bera, J. Hostetler, N. B. Fedorova, K.
630		Proudfoot, D. A. Katzel, T. B. Stockwell, E. Ghedin, D. J. Spiro, and E. G. Brown.
631		2011. Genomic and protein structural maps of adaptive evolution of human
632		influenza a virus to increased virulence in the mouse. PLoS ONE 6:e21740.
633	30.	Rae, B. P., and R. M. Elliott. 1986. Characterization of the mutations responsible for
634		the electrophoretic mobility differences in the NS proteins of vesicular stomatitis
635		virus New Jersey complementation group E mutants. J Gen Virol 67:2635-2643.
636	31.	Richt, J. A., and A. Garcia-Sastre. 2009. Attenuated influenza virus vaccines with
637		modified NS1 proteins. Curr Top Microbiol Immunol 333: 177-195.
638	32.	Robb, N. C., and E. Fodor. 2011. The accumulation of influenza A virus segment 7
639		spliced mRNAs is regulated by the NS1 protein. J Gen Virol 93: 113-118.

- 33. Robb, N. C., M. Smith, F. T. Vreede, and E. Fodor. 2009. NS2/NEP protein regulates 640 transcription and replication of the influenza virus RNA genome. J Gen Virol 90:1398-641 1407. 642 34. Roedig, J. V., E. Rapp, D. Hoper, Y. Genzel, and U. Reichl. 2011. Impact of Host Cell 643 Line Adaptation on Quasispecies Composition and Glycosylation of Influenza A Virus 644 645 Hemagglutinin. PLoS ONE 6:e27989. 35. Romanova, J., B. M. Krenn, M. Wolschek, B. Ferko, E. Romanovskaja-Romanko, A. 646 Morokutti, A. P. Shurygina, S. Nakowitsch, T. Ruthsatz, B. Kiefmann, U. Konig, M. 647 Bergmann, M. Sachet, S. Balasingam, A. Mann, J. Oxford, M. Slais, O. Kiselev, T. 648 Muster, and A. Egorov. 2009. Preclinical evaluation of a replication-deficient 649 intranasal DeltaNS1 H5N1 influenza vaccine. PLoS ONE 4:e5984. 650 Salvatore, M., C. F. Basler, J. P. Parisien, C. M. Horvath, S. Bourmakina, H. Zheng, T. 651 36. 652 Muster, P. Palese, and A. Garcia-Sastre. 2002. Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not 653 required for shutoff of host protein synthesis. J Virol 76:1206-1212. 654 37. Samuel, C. E. 2011. Adenosine deaminases acting on RNA (ADARs) are both antiviral 655 and proviral. Virology **411:**180-193. 656 38. Seitz, C., T. Frensing, D. Hoper, G. Kochs, and U. Reichl. 2010. High yields of 657 658 influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J Gen Virol 91:1754-1763. 659 39. Seitz, C., B. Isken, B. Heynisch, M. Rettkowski, T. Frensing, and U. Reichl. 2011. 660 Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering 661 with the antiviral host response. Appl Microbiol Biotechnol **93:**601-611. 662
- JVI Accepts published online ahead of print

663	40.	Sha, B., and M. Luo. 1997. Structure of a bifunctional membrane-RNA binding
664		protein, influenza virus matrix protein M1. Nat Struct Biol 4: 239-244.
665	41.	Stasakova, J., B. Ferko, C. Kittel, S. Sereinig, J. Romanova, H. Katinger, and A.
666		Egorov. 2005. Influenza A mutant viruses with altered NS1 protein function provoke
667		caspase-1 activation in primary human macrophages, resulting in fast apoptosis and
668		release of high levels of interleukins 1beta and 18. J Gen Virol 86:185-195.
669	42.	Suspene, R., V. Petit, D. Puyraimond-Zemmour, M. M. Aynaud, M. Henry, D.
670		Guetard, C. Rusniok, S. Wain-Hobson, and J. P. Vartanian. 2011. Double-stranded
671		RNA adenosine deaminase ADAR-1-induced hypermutated genomes among
672		inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol
673		85: 2458-2462.
674	43.	Talon, J., M. Salvatore, R. E. O'Neill, Y. Nakaya, H. Zheng, T. Muster, A. Garcia-
675		Sastre, and P. Palese. 2000. Influenza A and B viruses expressing altered NS1
676		proteins: A vaccine approach. Proc Natl Acad Sci U S A 97: 4309-4314.
677	44.	Tan, S. L., and M. G. Katze. 1999. The emerging role of the interferon-induced PKR
678		protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine
679		Res 19: 543-554.
680	45.	Tseng, Y. F., A. Y. Hu, M. L. Huang, W. Z. Yeh, T. C. Weng, Y. S. Chen, P. Chong, and
681		M. S. Lee. 2011. Adaptation of high-growth influenza H5N1 vaccine virus in Vero
682		cells: implications for pandemic preparedness. PLoS ONE 6:e24057.
683	46.	van Wielink, R., M. M. Harmsen, D. E. Martens, B. P. Peeters, R. H. Wijffels, and R.
684		J. Moormann. 2011. MDCK cell line with inducible allele B NS1 expression
685		propagates delNS1 influenza virus to high titres. Vaccine 29: 6976-6985.

686	47.	van Wielink, R., H. C. Kant-Eenbergen, M. M. Harmsen, D. E. Martens, R. H.
687		Wijffels, and J. M. Coco-Martin. 2011. Adaptation of a Madin-Darby canine kidney
688		cell line to suspension growth in serum-free media and comparison of its ability to
689		produce avian influenza virus to Vero and BHK21 cell lines. J Virol Methods 171:53-
690		60.
691	48.	Wacheck, V., A. Egorov, F. Groiss, A. Pfeiffer, T. Fuereder, D. Hoeflmayer, M. Kundi,
692		T. Popow-Kraupp, M. Redlberger-Fritz, C. A. Mueller, J. Cinatl, M. Michaelis, J.
693		Geiler, M. Bergmann, J. Romanova, E. Roethl, A. Morokutti, M. Wolschek, B. Ferko,
694		J. Seipelt, R. Dick-Gudenus, and T. Muster. 2010. A novel type of influenza vaccine:
695		safety and immunogenicity of replication-deficient influenza virus created by
696		deletion of the interferon antagonist NS1. J Infect Dis 201: 354-362.
697	49.	Wang, Z., N. C. Robb, E. Lenz, T. Wolff, E. Fodor, and S. Pleschka. 2010. NS
698		reassortment of an H7-type highly pathogenic avian influenza virus affects its
699		propagation by altering the regulation of viral RNA production and antiviral host
700		response. J Virol 84: 11323-11335.
701	50.	Wolschek, M., E. Samm, H. Seper, S. Sturlan, I. Kuznetsova, C. Schwager, A.
702		Khassidov, C. Kittel, T. Muster, A. Egorov, and M. Bergmann. 2011. Establishment of
703		a chimeric, replication-deficient influenza A virus vector by modulation of splicing
704		efficiency. J Virol 85: 2469-2473.
705	51.	Wressnigg, N., D. Voss, T. Wolff, J. Romanova, T. Ruthsatz, I. Mayerhofer, M.
706		Reiter, S. Nakowitsch, J. Humer, A. Morokutti, T. Muster, A. Egorov, and C. Kittel.
707		2009. Development of a live-attenuated influenza B DeltaNS1 intranasal vaccine
708		candidate. Vaccine 27: 2851-2857.

- 52. Wurzer, W. J., O. Planz, C. Ehrhardt, M. Giner, T. Silberzahn, S. Pleschka, and S.
- 710 Ludwig. 2003. Caspase 3 activation is essential for efficient influenza virus
- 711 propagation. Embo J **22**:2717-2728.
- 712 53. Ye, Z., D. Robinson, and R. R. Wagner. 1995. Nucleus-targeting domain of the matrix
- protein (M1) of influenza virus. J Virol **69:**1964-1970.
- 714 54. Yoneyama, M., W. Suhara, Y. Fukuhara, M. Sato, K. Ozato, and T. Fujita. 1996.
- 715 Autocrine amplification of type I interferon gene expression mediated by interferon
- stimulated gene factor 3 (ISGF3). J Biochem **120**:160-169.
- 717 55. Zhirnov, O. P., and H. D. Klenk. 2007. Control of apoptosis in influenza virus-infected
 718 cells by up-regulation of Akt and p53 signaling. Apoptosis 12:1419-1432.
- 719 56. Zhirnov, O. P., T. E. Konakova, W. Garten, and H. Klenk. 1999. Caspase-dependent
- N-terminal cleavage of influenza virus nucleocapsid protein in infected cells. J Virol **73:**10158-10163.
- 722 57. Zhirnov, O. P., T. E. Konakova, T. Wolff, and H. D. Klenk. 2002. NS1 protein of
- influenza A virus down-regulates apoptosis. J Virol **76:**1617-1625.
- 724

726 Figure legends

727	Fig. 1. Replication of delNS1 virus adapted to growth on MDCK-SFS cells. Maximum
728	infectious virus titre during each passage step of the second delNS1 adaptation experiment
729	(A). Replication kinetics of the two adapted delNS1 ^{CA1} and delNS1 ^{CA2} virus strains in
730	comparison to WT and parental delNS1 ^{EA} virus after infection of MDCK-SFS (B) or Vero (C)
731	cells at MOI 0.01. Geometric mean titres and 95% confidence interval of the mean of virus
732	infections performed in triplicate are presented.
733	
734	Fig. 2. Nucleotide substitutions in M-gene segments of adapted delNS1 viruses. (A)
735	Sequence analysis of delNS1 CA2 showing the simultaneous accumulation of six U-to-C
736	substitutions (indicated by arrows) in the M segment vRNA between position 277-325 from
737	passages 3 to 5 on MDCK-SFS cells. Double peaks are visible at passage 4 and 5. Note that in
738	the electropherograms U is shown as T. (B) Schematic overview of the M segment mRNAs,
739	with the locations of the adaptive M^{CA1} and M^{CA2} mutations and splicing products M2 mRNA
740	and mRNA3. Open reading frames are indicated by thick bars. (C) Nucleotide sequences of
741	the M^{CA1} and M^{CA2} regions shown in panel B, including the amino acid sequence of M^{CA2} ,
742	where dots indicate sequence identity of $M1^{CA2}$ to $M1^{WT}$. The square box indicates the
743	location of the NLS in M1, with positively charged (+) amino acids (53). The arrow indicates
744	the location of the adaptive mutation in influenza B M1 protein found earlier (51). The
745	amino acid sequence of $M1^{CA1}$ is not shown since it is identical to $M1^{WT}$ (i.e. all mutations
746	were silent).
747	

Fig. 3. Comparison of infectious virus titres 3 d after infection of MDCK-SFS cells with the
 cell-adapted or the various reassortant virus strains (MOI 0.01). (A) Titres of delNS1

750	reassortant viruses made with original deINS1 plasmids (not-filled), or plasmids containing
751	single or multiple mutations originating from the adapted virus strains delNS1 ^{CA1} (filled,
752	marked 1) and delNS1 ^{CA2} (filled, marked 2). (B) Titres of delNS1 reassortant viruses
753	containing one or more of the delNS1 ^{CA2} M segment mutations and of WT reassortant virus
754	containing the M^{CA2} mutations. In both panels, geometric mean titres and 95% confidence
755	interval of the mean are presented of triplicate measurements.
756	
757	<u>Fig. 4.</u> Effect of delNS1 virus adaptation on IFN- β and apoptosis induction. IFN induction in
758	MDCK-SFS cells infected with either WT, delNS1, delNS1 ^{CA1} or delNS1 ^{CA2} virus, or mock

infected (A), and delNS1:M^{CA1}, delNS1:M^{CA2} or delNS1:M^{CA2.3} virus (B) was measured with an
IFN-β dependent luciferase reporter construct and corrected for transfection efficiency with
Renilla luciferase. (C) Induction of apoptosis in MDCK-SFS cells infected with either WT,
delNS1, delNS1^{CA1} or delNS1^{CA2} virus, or mock infected. Apoptosis induction was assessed by
measuring the activity of caspase 3 and 7. Geometric mean activities and 95% confidence
interval of the mean are presented of experiment performed in triplicate.

765

Fig. 5. Western blot analysis of M1 and M2 protein expression 10 h after infection of MDCK-766 SFS cells (A) or 48 h after transient transfection of HEK293T cells (C) with plasmid (Table 1) 767 containing either the WT M segment (pHW197), the mutated M^{CA1} or M^{CA2} segments 768 (pROM36 and pROM35), or the M segment containing one or more delNS1^{CA2} mutations 769 770 (pROM51-54). M1 and M2 protein levels of three independent experiments were quantified using phosphorimager densitometry. The M1/M2 ratio for each virus (B) or plasmid (D) is 771 shown as the mean and 95% confidence interval of the mean. Lanes 1-4 and lanes 5-8 in 772 panel A originated from two different blots. 773

775	Fig. 6. Subcellular localization of M1 protein. MDCK-SFS cells were infected with WT, delNS1
776	and delNS1:M ^{CA2.3} virus at high MOI in triplicate. Then, cytoplasm and nucleoplasm fractions
777	were prepared at 6 hpi and 10 hpi and M1 protein was quantified by Western blot analysis.
778	Panel (A) shows one representative Western blot. Tubulin (Tub) and lamin A/C (Lam) were
779	used as cytoplasm and nucleoplasm specific controls, respectively. The isolations were
780	successful as no tubulin was observed in the nucleoplasm isolates (lane 1-6) and no lamin
781	A/C was observed in the cytoplasm isolates (lane 8-13). The cytoplasmic isolate of WT virus
782	at 6 hpi was used as a source of tubulin in lane 7 whereas the nucleoplasmic isolate of WT
783	virus at 6 hpi was used as a source of lamin A/C in lane 14. Nuclear isolates show aspecific
784	staining by the tubulin antibody (lane 1-6), which is not present in the cytoplasmic control
785	(lane 7). (B) M1 protein levels were quantified by phosphorimager densitometry using
786	tubulin and lamin A/C, respectively, as controls to compensate for the isolation efficiency.
787	The ratio of corrected nuclear M1 (M1 $_n$) to corrected cytoplasmic M1 (M1 $_c$) was used to
788	determine changes in the distribution of M1 and is shown as the mean and 95% confidence
789	interval of the mean at 6 hpi (empty bars) and 10 hpi (filled bars).

791 <u>Tables:</u>

792 Table 1. pHW2000-derived plasmids encoding mutant gene segments from cell-adapted

793 delNS1 viruses.

Plasmid	Segment	Nucleotide substitutions	Amino acid substitutions ^a
pROM34	HA ^{CA1}	U796C	F257L
pROM33	HA ^{CA2}	C1326A	None
pROM16	NP ^{CA1}	A1381G	R446G
pROM36	M ^{CA1}	U640C, U643C, U652C, U688C	None
pROM35	M ^{CA2}	U277C, U298C, U315C, U316C, U323C, U325C	V97A, Y100H
pROM51	M ^{CA2.1}	U315C	V97A
pROM52	M ^{CA2.2}	U323C	Y100H
pROM53	M ^{CA2.3}	U315C, U323C	V97A, Y100H
pROM54	M ^{CA2.4}	U277C, U298C, U316C, U325C	None
pROM13	NS ^{CA1}	A148G, A173G, A179G, A180G, A248G, A252G	Y41C, M52V, I76V

^a Amino acid positions are relative to methionine in the open reading frame.

795

Table 2. Mutations in egg adapted delNS1^{EA} and cell adapted delNS1^{CA1} and delNS1^{CA2} virus

798 strains.

Gene	Nucleotide	Nucleotide substitution ^b Am			Amino acid
segment	position ^a	delNS1 ^{EA}	delNS1 ^{CA1}	delNS1 ^{CA2}	substitution ^b
PB1 (S2)	798	-	G to U	-	-
	1953	A to U 50% ^c	A to U	A to U	-
	2133	U to C 50% ^c	U to C	U to C	-
HA (S4)	796	-	U to C	-	F257L
	1326 (1338)	C to A 50% ^c	-	C to A	-
NP (S5)	1381	-	A to G	-	R446G
M (S7)	277	-	-	U to C	-
	298	-	-	U to C	-
	315	-	-	U to C	V97A
	316	-	-	U to C	-
	323	-	-	U to C	Y100H
	325	-	-	U to C	-
	640	-	U to C	-	-
	643	-	U to C	-	-
	652	-	U to C	-	-
	688	-	U to C	-	-
NS (S8)	148 (620)	-	A to G	-	Y41C
	173 (645)	-	A to G	-	-
	179 (651)	-	A to G	-	-
	180 (652)	-	A to G	-	M52V
	248 (720)	-	A to G	-	-
	252 (724)	-	A to G	-	176V

^a Numbering refers to nucleotide positions in the vRNA template [GenBank accession no:

800 EF467819 (PB1), DQ407519 (HA), EF467822 (NP), EF190985 (M), AF389122 (NS)]. Note that

801 the numbering of the HA and NS mutations refers to the recombinant gene segments (46).

802 The numbering in line with the Genbank sequences is placed between brackets.

^b Substitutions as compared to sequence of plasmid used for initial delNS1 virus generation.

804 – No substitution.

^c Presence of a second nucleotide sequence within the seed virus.

Figure 1: Role of M segment in delNS1 influenza replication. R. van Wielink et al.

Figure 2: Role of M segment in delNS1 influenza replication. R. van Wielink et al.

Figure 3: Role of M segment in delNS1 influenza replication. R. van Wielink et al.

Figure 4: Role of M segment in delNS1 influenza replication. R. van Wielink et al.

Figure 5: Role of M segment in delNS1 influenza replication. R. van Wielink et al.

Figure 6: Role of M segment in delNS1 influenza replication. R. van Wielink et al.