5 research outputs found

    Can recurrent neural networks learn process model structure?

    Full text link
    Various methods using machine and deep learning have been proposed to tackle different tasks in predictive process monitoring, forecasting for an ongoing case e.g. the most likely next event or suffix, its remaining time, or an outcome-related variable. Recurrent neural networks (RNNs), and more specifically long short-term memory nets (LSTMs), stand out in terms of popularity. In this work, we investigate the capabilities of such an LSTM to actually learn the underlying process model structure of an event log. We introduce an evaluation framework that combines variant-based resampling and custom metrics for fitness, precision and generalization. We evaluate 4 hypotheses concerning the learning capabilities of LSTMs, the effect of overfitting countermeasures, the level of incompleteness in the training set and the level of parallelism in the underlying process model. We confirm that LSTMs can struggle to learn process model structure, even with simplistic process data and in a very lenient setup. Taking the correct anti-overfitting measures can alleviate the problem. However, these measures did not present themselves to be optimal when selecting hyperparameters purely on predicting accuracy. We also found that decreasing the amount of information seen by the LSTM during training, causes a sharp drop in generalization and precision scores. In our experiments, we could not identify a relationship between the extent of parallelism in the model and the generalization capability, but they do indicate that the process' complexity might have impact

    Conformance checking using activity and trace embeddings

    No full text
    Conformance checking describes process mining techniques used to compare an event log and a corresponding process model. In this paper, we propose an entirely new approach to conformance checking based on neural network-based embeddings. These embeddings are vector representations of every activity/task present in the model and log, obtained via act2vec, a Word2vec based model. Our novel conformance checking approach applies the Word Mover's Distance to the activity embeddings of traces in order to measure fitness and precision. In addition, we investigate a more efficiently calculated lower bound of the former metric, i.e. the Iterative Constrained Transfers measure. An alternative method using trace2vec, a Doc2vec based model, to train and compare vector representations of the process instances themselves is also introduced. These methods are tested in different settings and compared to other conformance checking techniques, showing promising results.status: publishe

    Supervised conformance checking using recurrent neural network classifiers

    No full text
    Conformance checking is concerned with the task of assessing the quality of process models describing actual behavior captured in an event log across different dimensions. In this paper, a novel approach for obtaining the degree of recall and precision between a process model and event log is introduced. The approach relies on the generation of a so-called “antilog”, randomly constructed from the activity vocabulary, on one hand, and a simulated “model log”, which is played-out from the given model. In the case of recall the antilog and model log are used to train a recurrent neural network classifier. This network allows for calculating the probability of a trace being part of the model log or the antilog. If thereupon the event log is fed to the neural network, a value for recall can be obtained. In the case of precision the neural network is trained using a given event log and the antilog, and the model log is fed to it afterwards. We show that this new method can be used to measure global recall and precision correctly in some common examples

    Can deep neural networks learn process model structure? An assessment framework and analysis

    No full text
    Predictive process monitoring concerns itself with the prediction of ongoing cases in (business) processes. Prediction tasks typically focus on remaining time, outcome, next event or full case suffix prediction. Various methods using machine and deep learning have been proposed for these tasks in recent years. Especially recurrent neural networks (RNNs) such as long short-term memory nets (LSTMs) have gained in popularity. However, no research focuses on whether such neural network-based models can truly learn the structure of underlying process models. For instance, can such neural networks effectively learn parallel behaviour or loops? Therefore, in this work, we propose an evaluation scheme complemented with new fitness, precision, and generalisation metrics, specifically tailored towards measuring the capacity of deep learning models to learn process model structure. We apply this framework to several process models with simple control-flow behaviour, on the task of next-event prediction. Our results show that, even for such simplistic models, careful tuning of overfitting countermeasures is required to allow these models to learn process model structure

    Outcome-Oriented Predictive Process Monitoring on Positive and Unlabelled Event Logs

    No full text
    AbstractA lot of recent literature on outcome-oriented predictive process monitoring focuses on using models from machine and deep learning. In this literature, it is assumed the outcome labels of the historical cases are all known. However, in some cases, the labelling of cases is incomplete or inaccurate. For instance, you might only observe negative customer feedback, fraudulent cases might remain unnoticed. These cases are typically present in the so-called positive and unlabelled (PU) setting, where your data set consists of a couple of positively labelled examples and examples which do not have a positive label, but might still be examples of a positive outcome. In this work, we show, using a selection of event logs from the literature, the negative impact of mislabelling cases as negative, more specifically when using XGBoost and LSTM neural networks. Furthermore, we show promising results on real-life datasets mitigating this effect, by changing the loss function used by a set of models during training to those of unbiased Positive-Unlabelled (uPU) or non-negative Positive-Unlabelled (nnPU) learning.</jats:p
    corecore