5 research outputs found

    Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study

    Get PDF
    Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial

    Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials:the IMI-APPROACH study

    No full text
    Abstract Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design: We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial

    Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): A multi-centre prospective cohort study protocol

    No full text
    Background: There is a growing body of literature highlighting the role that wearable and mobile remote measurement technology (RMT) can play in measuring symptoms of major depressive disorder (MDD). Outcomes assessment typically relies on self-report, which can be biased by dysfunctional perceptions and current symptom severity. Predictors of depressive relapse include disrupted sleep, reduced sociability, physical activity, changes in mood, prosody and cognitive function, which are all amenable to measurement via RMT. This study aims to: 1) determine the usability, feasibility and acceptability of RMT; 2) improve and refine clinical outcome measurement using RMT to identify current clinical state; 3) determine whether RMT can provide information predictive of depressive relapse and other critical outcomes. Methods: RADAR-MDD is a multi-site prospective cohort study, aiming to recruit 600 participants with a history of depressive disorder across three sites: London, Amsterdam and Barcelona. Participants will be asked to wear a wrist-worn activity tracker and download several apps onto their smartphones. These apps will be used to either collect data passively from existing smartphone sensors, or to deliver questionnaires, cognitive tasks, and speech assessments. The wearable device, smartphone sensors and questionnaires will collect data for up to 2-years about participants' sleep, physical activity, stress, mood, sociability, speech patterns, and cognitive function. The primary outcome of interest is MDD relapse, defined via the Inventory of Depressive Symptomatology-Self-Report questionnaire (IDS-SR) and the World Health Organisation's self-reported Composite International Diagnostic Interview (CIDI-SF). Discussion: This study aims to provide insight into the early predictors of major depressive relapse, measured unobtrusively via RMT. If found to be acceptable to patients and other key stakeholders and able to provide clinically useful information predictive of future deterioration, RMT has potential to change the way in which depression and other long-term conditions are measured and managed
    corecore