2,288 research outputs found

    Risk and resilience: exploring the potential of LGBTQ third sector and academic partnership

    Get PDF
    The Risk and Resilience Explored [RaRE] Project (2010–2016) was a collaborative process involving a third sector agency, university partners and volunteers to better understand the risk and resilience factors associated with specific mental health issues among lesbian, gay, bisexual, trans, and queer (LGBTQ) people. In this article, we discuss the project’s collaborative ethos, based on a Community-Based Participatory Research (CBPR) approach. We explain how the CBPR approach benefitted from including academic partners from the onset of the project, as well as from the direct and indirect engagement of community volunteers. We then explore some of our experience of third sector and academic partner collaboration in more depth, highlighting topic summaries salient to this partnership: support and continuity, upskilling of staff and volunteers for mutual benefit, accessible communication across sectors, and aligning priorities. We conclude by setting out recommendations based on our experience for those interested in developing similarly collaborative projects

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    Updated world map of the Köppen-Geiger climate classification

    No full text
    International audienceAlthough now over 100 years old, the classification of climate originally formulated by Wladimir Köppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Köppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Köppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude) thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Köppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert) followed by Aw (11.5%, Tropical savannah). The updated world Köppen-Geiger climate map is freely available electronically in the Supplementary Material Section

    Exploring LGBT resilience and moving beyond a deficit-model: findings from a qualitative study in England

    Get PDF
    The aim of this study is to critique and extend psychological approaches to resilience by examining retrospective accounts of LGBT people in England who had directly experienced or witnessed events that were salient as significantly negative or traumatic. Pre-screening telephone interviews identified ten individuals who matched inclusion criteria (mean age: 39 years; range 26–62 years) as part of a larger study. Interviews were semi-structured and informed by a literature review undertaken at the start of the study. We identified three themes of that extend the resilience literature for LGBTQ+ people: (1) identifying and foregrounding inherent personal traits – how non-contextual inborn qualities or attributes needed external effort to be recognised and operationalised; (2) describing asymmetric sources of social support and acceptance – the importance of positive environment is unequally available to LGBT people compared to heterosexuals, and uneven within the LGBT group; and (3) blurring distinctions between resilience and coping – experiential approaches to moving beyond distress. We suggest that narratives of resilience in the accounts of LGBT people can inform the development of resilience promotion models for minoritized individuals and support movement away from deficit-focused approaches to health policy

    Planck Observations of M33

    Get PDF
    We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between \sim100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of TdustT_\mathrm{dust} = 21.67±\pm0.30 K and an effective dust emissivity index of βeff\beta_\mathrm{eff} = 1.35±\pm0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in TdustT_\mathrm{dust} and βeff\beta_\mathrm{eff} across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of TdustT_\mathrm{dust} by \sim5 K and an under-estimate of βeff\beta_\mathrm{eff} by \sim0.4.Comment: Accepted for publication in MNRA

    Dark Energy Constraints from Galaxy Cluster Peculiar Velocities

    Full text link
    Future multifrequency microwave background experiments with arcminute resolution and micro-Kelvin temperature sensitivity will be able to detect the kinetic Sunyaev-Zeldovich (kSZ) effect, providing a way to measure radial peculiar velocities of massive galaxy clusters. We show that cluster peculiar velocities have the potential to constrain several dark energy parameters. We compare three velocity statistics (the distribution of radial velocities, the mean pairwise streaming velocity, and the velocity correlation function) and analyze the relative merits of these statistics in constraining dark energy parameters. Of the three statistics, mean pairwise streaming velocity provides constraints that are least sensitive to velocity errors: the constraints on parameters degrades only by a factor of two when the random error is increased from 100 to 500 km/s. We also compare cluster velocities with other dark energy probes proposed in the Dark Energy Task Force report. For cluster velocity measurements with realistic priors, the eventual constraints on the dark energy density, the dark energy equation of state and its evolution are comparable to constraints from supernovae measurements, and better than cluster counts and baryon acoustic oscillations; adding velocity to other dark energy probes improves constraints on the figure of merit by more than a factor of two. For upcoming Sunyaev-Zeldovich galaxy cluster surveys, even velocity measurements with errors as large as 1000 km/s will substantially improve the cosmological constraints compared to using the cluster number density alone.Comment: 25 pages, 10 figures. Results and conclusions unchanged. Minor changes to match the accepted version in Physical Review

    Beyond good intentions: lessons on equipment donation from an African hospital.

    Get PDF
    OBJECTIVE: In 2000, a referral hospital in the Gambia accepted a donation of oxygen concentrators to help maintain oxygen supplies. The concentrators broke down and were put into storage. A case study was done to find the reasons for the problem and to draw lessons to help improve both oxygen supplies and the success of future equipment donations. METHODS: A technical assessment of the concentrators was carried out by a biomedical engineer with relevant expertise. Semi-structured interviews were undertaken with key informants, and content analysis and inductive approaches were applied to construct the history of the episode and the reasons for the failure. FINDINGS: Interviews confirmed the importance of technical problems with the equipment. They also revealed that the donation process was flawed, and that the hospital did not have the expertise to assess or maintain the equipment. Technical assessment showed that all units had the wrong voltage and frequency, leading to overheating and breakdown. Subsequently a hospital donations committee was established to oversee the donations process. On-site biomedical engineering expertise was arranged with a nongovernmental organization (NGO) partner. CONCLUSION: Appropriate donations of medical equipment, including oxygen concentrators, can be of benefit to hospitals in resource-poor settings, but recipients and donors need to actively manage donations to ensure that the donations are beneficial. Success requires planning, technical expertise and local participation. Partners with relevant skills and resources may also be needed. In 2002, WHO produced guidelines for medical equipment donations, which address problems that might be encountered. These guidelines should be publicized and used

    The C-Band All-Sky Survey (C-BASS): Constraining diffuse Galactic radio emission in the North Celestial Pole region

    Get PDF
    The C-Band All-Sky Survey C-BASS is a high-sensitivity all-sky radio survey at an angular resolution of 45 arcmin and a frequency of 4.7 GHz. We present a total intensity 4.7 GHz map of the North Celestial Pole (NCP) region of sky, above declination +80 deg, which is limited by source confusion at a level of ~0.6 mK rms. We apply the template-fitting (cross-correlation) technique to WMAP and Planck data, using the C-BASS map as the synchrotron template, to investigate the contribution of diffuse foreground emission at frequencies ~20-40 GHz. We quantify the anomalous microwave emission (AME) that is correlated with far-infrared dust emission. The AME amplitude does not change significantly (<10%) when using the higher frequency C-BASS 4.7 GHz template instead of the traditional Haslam 408 MHz map as a tracer of synchrotron radiation. We measure template coefficients of 9.93±0.359.93\pm0.35 and 9.52±0.349.52\pm0.34 K per unit τ353\tau_{353} when using the Haslam and C-BASS synchrotron templates, respectively. The AME contributes 55±2μ55\pm2\,\muK rms at 22.8 GHz and accounts for ~60% of the total foreground emission. Our results suggest that a harder (flatter spectrum) component of synchrotron emission is not dominant at frequencies >5 GHz; the best-fitting synchrotron temperature spectral index is β=2.91±0.04\beta=-2.91\pm0.04 from 4.7 to 22.8 GHz and β=2.85±0.14\beta=-2.85\pm0.14 from 22.8 to 44.1 GHz. Free-free emission is weak, contributing ~7μ7\,\muK rms (~7%) at 22.8 GHz. The best explanation for the AME is still electric dipole emission from small spinning dust grains.Comment: 18 pages, 6 figures, version matches version accepted by MNRA

    C-Band All-Sky Survey: A First Look at the Galaxy

    Get PDF
    We present an analysis of the diffuse emission at 5 GHz in the first quadrant of the Galactic plane using two months of preliminary intensity data taken with the C-Band All Sky Survey (C-BASS) northern instrument at the Owens Valley Radio Observatory, California. Combining C-BASS maps with ancillary data to make temperature-temperature plots we find synchrotron spectral indices of β=2.65±0.05\beta = -2.65 \pm 0.05 between 0.408 GHz and 5 GHz and β=2.72±0.09 \beta = -2.72 \pm 0.09 between 1.420 GHz and 5 GHz for 10<b<4-10^{\circ} < |b| < -4^{\circ}, 20<l<4020^{\circ} < l < 40^{\circ}. Through the subtraction of a radio recombination line (RRL) free-free template we determine the synchrotron spectral index in the Galactic plane (b<4 |b| < 4^{\circ}) to be β=2.56±0.07\beta = -2.56 \pm 0.07 between 0.408 GHz and 5 GHz, with a contribution of 53±853 \pm 8 per cent from free-free emission at 5\,GHz. These results are consistent with previous low frequency measurements in the Galactic plane. By including C-BASS data in spectral fits we demonstrate the presence of anomalous microwave emission (AME) associated with the HII complexes W43, W44 and W47 near 30 GHz, at 4.4 sigma, 3.1 sigma and 2.5 sigma respectively. The CORNISH VLA 5 GHz source catalogue rules out the possibility that the excess emission detected around 30\;GHz may be due to ultra-compact HII regions. Diffuse AME was also identified at a 4 sigma level within 30<l<4030^{\circ} < l < 40^{\circ}, 2<b<2-2^{\circ} < b < 2^{\circ} between 5 GHz and 22.8 GHz.Comment: 16 pages, 9 figures, submitted to MNRAS, referee's corrections made, awaiting for final approval for publicatio
    corecore