609 research outputs found
Noninteracting dark matter
Since an acceptable dark matter candidate may interact only weakly with
ordinary matter and radiation, it is of interest to consider the limiting case
where the dark matter interacts only with gravity and itself, the matter
originating by the gravitational particle production at the end of inflation.
We use the bounds on the present dark mass density and the measured large-scale
fluctuations in the thermal cosmic background radiation to constrain the two
parameters in a self-interaction potential that is a sum of quadratic and
quartic terms in a single scalar dark matter field that is minimally coupled to
gravity. In quintessential inflation, where the temperature at the end of
inflation is relatively low, the field starts acting like cold dark matter
relatively late, shortly before the epoch of equal mass densities in matter and
radiation. This could have observable consequences for galaxy formation. We
respond to recent criticisms of the quintessential inflation scenario, since
these issues also apply to elements of the noninteracting dark matter picture.Comment: 37 pages, 3 figure
Finite-time singularities in f(R, T) gravity and the effect of conformal anomaly
We investigate gravity models ( is the curvature scalar and
is the trace of the stress-energy tensor of ordinary matter) that are able to
reproduce the four known types of future finite-time singularities. We choose a
suitable expression for the Hubble parameter in order to realise the cosmic
acceleration and we introduce two parameters, and , which
characterise each type of singularity. We address conformal anomaly and we
observe that it cannot remove the sudden singularity or the type IV one, but,
for some values of , the big rip and the type III singularity may be
avoided. We also find that, even without taking into account conformal anomaly,
the big rip and the type III singularity may be removed thanks to the presence
of the contribution of the theory.Comment: 18 pages; Accepted for publication in Canadian Journal of Physics
(CJP
Properties of voids in the Local Volume
Current explanation of the overabundance of dark matter subhalos in the Local
Group (LG) indicates that there maybe a limit on mass of a halo, which can host
a galaxy. This idea can be tested using voids in the distribution of galaxies:
at some level small voids should not contain any (even dwarf) galaxies. We use
observational samples complete to M_B=-12 with distances less than 8 Mpc to
construct the void function (VF): the distribution of sizes of voids empty of
any galaxies. There are ~ 30 voids with sizes ranging from 1 to 5 Mpc. We also
study the distribution of dark matter halos in very high resolution simulations
of the LCDM model. The theoretical VF matches the observations remarkably well
only if we use halos with circular velocities larger than 45 +/- 10 km/s. This
agrees with the Local Group predictions. Small voids look quite similar to heir
giant cousins: the density has a minimum at the center of a void and it
increases as we get closer to the border. Thus, both the Local Group data and
the nearby voids indicate that isolated halos below 45 +/- 10 km/s must not
host galaxies and that small (few Mpc) voids are truly dark.Comment: 5 pages 1 figure. To appear in proceedings of the conference
"Galaxies in the Local Volume", Sydney, 8 to 13 July 200
The ergodicity bias in the observed galaxy distribution
The spatial distribution of galaxies we observed is subject to the given
condition that we, human beings are sitting right in a galaxy -- the Milky Way.
Thus the ergodicity assumption is questionable in interpretation of the
observed galaxy distribution. The resultant difference between observed
statistics (volume average) and the true cosmic value (ensemble average) is
termed as the ergodicity bias. We perform explicit numerical investigation of
the effect for a set of galaxy survey depths and near-end distance cuts. It is
found that the ergodicity bias in observed two- and three-point correlation
functions in most cases is insignificant for modern analysis of samples from
galaxy surveys and thus close a loophole in precision cosmology. However, it
may become non-negligible in certain circumstances, such as those applications
involving three-point correlation function at large scales of local galaxy
samples. Thus one is reminded to take extra care in galaxy sample construction
and interpretation of the statistics of the sample, especially when the
characteristic redshift is low.Comment: Revised version published as JCAP08(2010)01
Solution Of Wheeler-De Witt Equation, Potential Well And Tunnel Effect
This paper uses the relation of the cosmic scale factor and scalar field to
solve Wheeler-DeWitt equation, gives the tunnel effect of the cosmic scale
factor a and quantum potential well of scalar field, and makes it fit with the
physics of cosmic quantum birth. By solving Wheeler-DeWitt equation we achieve
a general probability distribution of the cosmic birth, and give the analysis
of cosmic quantum birth.Comment: 12 page
Low-scale Quintessential Inflation
In quintessential inflationary model, the same master field that drives
inflation becomes, later on, the dynamical source of the (present) accelerated
expansion. Quintessential inflationary models require a curvature scale at the
end of inflation around in order to explain the large scale
fluctuations observed in the microwave sky. If the curvature scale at the end
of inflation is much smaller than , the large scale adiabatic
mode may be produced thanks to the relaxation of a scalar degree of freedom,
which will be generically denoted, according to the recent terminology, as the
curvaton field. The production of the adiabatic mode is analysed in detail in
the case of the minimal quintessential inflationary model originally proposed
by Peebles and Vilenkin.Comment: 25 pages; 5 figure
Inflationary and dark energy regimes in 2+1 dimensions
In this work we investigate the behavior of three-dimensional (3D)
cosmological models. The simulation of inflationary and dark-energy-dominated
eras are among the possible results in these 3D formulations; taking as
starting point the results obtained by Cornish and Frankel.
Motivated by those results, we investigate, first, the inflationary case
where we consider a two-constituent cosmological fluid: the scalar field
represents the hypothetical inflaton which is in gravitational interaction with
a matter/radiation contribution. For the description of an old universe, it is
possible to simulate its evolution starting with a matter dominated universe
that faces a decelerated/accelerated transition due to the presence of the
additional constituent (simulated by the scalar field or ruled by an exotic
equation of state) that plays the role of dark energy. We obtain, through
numerical analysis, the evolution in time of the scale factor, the
acceleration, the energy densities, and the hydrostatic pressure of the
constituents. The alternative scalar cosmology proposed by Cornish and Frankel
is also under investigation in this work. In this case an inflationary model
can be constructed when another non-polytropic equation of state (the van der
Waals equation) is used to simulate the behavior of an early 3D universe.Comment: Latex file, plus 9 figures. To appear in General Relativity and
Gravitatio
Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications
We use the halo model of clustering to compute two- and three-point
correlation functions for weak lensing, and apply them in a new statistical
technique to measure properties of massive halos. We present analytical results
on the eight shear three-point correlation functions constructed using
combination of the two shear components at each vertex of a triangle. We
compare the amplitude and configuration dependence of the functions with
ray-tracing simulations and find excellent agreement for different scales and
models. These results are promising, since shear statistics are easier to
measure than the convergence. In addition, the symmetry properties of the shear
three-point functions provide a new and precise way of disentangling the
lensing E-mode from the B-mode due to possible systematic errors.
We develop an approach based on correlation functions to measure the
properties of galaxy-group and cluster halos from lensing surveys. Shear
correlations on small scales arise from the lensing matter within halos of mass
M > 10^13 solar masses. Thus the measurement of two- and three-point
correlations can be used to extract information on halo density profiles,
primarily the inner slope and halo concentration. We demonstrate the
feasibility of such an analysis for forthcoming surveys. We include covariances
in the correlation functions due to sample variance and intrinsic ellipticity
noise to show that 10% accuracy on profile parameters is achievable with
surveys like the CFHT Legacy survey, and significantly better with future
surveys. Our statistical approach is complementary to the standard approach of
identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28).
Matches version for publication in MNRA
Statistics and geometry of cosmic voids
We introduce new statistical methods for the study of cosmic voids, focusing
on the statistics of largest size voids. We distinguish three different types
of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like
distributions. The last two distributions are connected with two types of
fractal geometry of the matter distribution. Scaling voids with Pareto
distribution appear in fractal distributions with box-counting dimension
smaller than three (its maximum value), whereas the lognormal void distribution
corresponds to multifractals with box-counting dimension equal to three.
Moreover, voids of the former type persist in the continuum limit, namely, as
the number density of observable objects grows, giving rise to lacunar
fractals, whereas voids of the latter type disappear in the continuum limit,
giving rise to non-lacunar (multi)fractals. We propose both lacunar and
non-lacunar multifractal models of the cosmic web structure of the Universe. A
non-lacunar multifractal model is supported by current galaxy surveys as well
as cosmological -body simulations. This model suggests, in particular, that
small dark matter halos and, arguably, faint galaxies are present in cosmic
voids.Comment: 39 pages, 8 EPS figures, supersedes arXiv:0802.038
Lopsidedness of cluster galaxies in modified gravity
We point out an interesting theoretical prediction for elliptical galaxies
residing inside galaxy clusters in the framework of modified Newtonian dynamics
(MOND), that could be used to test this paradigm. Apart from the central
brightest cluster galaxy, other galaxies close enough to the centre experience
a strong gravitational influence from the other galaxies of the cluster. This
influence manifests itself only as tides in standard Newtonian gravity, meaning
that the systematic acceleration of the centre of mass of the galaxy has no
consequence. However, in the context of MOND, a consequence of the breaking of
the strong equivalence principle is that the systematic acceleration changes
the own self-gravity of the galaxy. We show here that, in this framework,
initially axisymmetric elliptical galaxies become lopsided along the external
field's direction, and that the centroid of the galaxy, defined by the outer
density contours, is shifted by a few hundreds parsecs with respect to the
densest point.Comment: accepted for publication in JCA
- …