416 research outputs found
Accuracy analysis of pointing control system of solar power station
The first-phase effort concentrated on defining the minimum basic functions that the retrodirective array must perform, identifying circuits that are capable of satisfying the basic functions, and looking at some of the error sources in the system and how they affect accuracy. The initial effort also examined three methods for generating torques for mechanical antenna control, performed a rough analysis of the flexible body characteristics of the solar collector, and defined a control system configuration for mechanical pointing control of the array
Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations
During the transition from a neutral to a fully reionized universe,
scattering of cosmic microwave background (CMB) photons via free-electrons
leads to a new anisotropy contribution to the temperature distribution. If the
reionization process is inhomogeneous and patchy, the era of reionization is
also visible via brightness temperature fluctuations in the redshifted 21 cm
line emission from neutral Hydrogen. Since regions containing electrons and
neutral Hydrogen are expected to trace the same underlying density field, the
two are (anti) correlated and this is expected to be reflected in the
anisotropy maps via a correlation between arcminute-scale CMB temperature and
the 21 cm background. In terms of the angular cross-power spectrum,
unfortunately, this correlation is insignificant due to a geometric
cancellation associated with second order CMB anisotropies. The same
cross-correlation between ionized and neutral regions, however, can be studied
using a bispectrum involving large scale velocity field of ionized regions from
the Doppler effect, arcminute scale CMB anisotropies during reionization, and
the 21 cm background. While the geometric cancellation is partly avoided, the
signal-to-noise ratio related to this bispectrum is reduced due to the large
cosmic variance related to velocity fluctuations traced by the Doppler effect.
Unless the velocity field during reionization can be independently established,
it is unlikely that the correlation information related to the relative
distribution of ionized electrons and regions containing neutral Hydrogen can
be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure
Cosmological dynamics of scalar fields with O(N) symmetry
In this paper, we study the cosmological dynamics of scalar fields with O(N)
symmetry in general potentials. We compare the phase space of the dynamical
systems of the quintessence and phantom and give the conditions for the
existence of various attractors as well as their cosmological implications. We
also show that the existence of tracking attractor in O(N) phantom models
require the potential with , which makes the models with
exponential potential possess no tracking attractor.Comment: 9 pages, 4 figures; Replaced with the version to be published in
Classical and Quantum Gravity. Reference adde
Linearized Kompaneetz equation as a relativistic diffusion
We show that Kompaneetz equation describing photon diffusion in an
environment of an electron gas, when linearized around its equilibrium
distribution, coincides with the relativistic diffusion discussed in recent
publications. The model of the relativistic diffusion is related to soluble
models of imaginary time quantum mechanics. We suggest some non-linear
generalizations of the relativistic diffusion equation and their astrophysical
applications (in particular to the Sunyaev-Zeldovich effect).Comment: 12 page
A dipole anisotropy of galaxy distribution: Does the CMB rest-frame exist in the local universe?
The peculiar motion of the Earth causes a dipole anisotropy modulation in the
distant galaxy distribution due to the aberration effect. However, the
amplitude and angular direction of the effect is not necessarily the same as
those of the cosmic microwave background (CMB) dipole anisotropy due to the
growth of cosmic structures. In other words exploring the aberration effect may
give us a clue to the horizon-scale physics perhaps related to the cosmic
acceleration. In this paper we develop a method to explore the dipole angular
modulation from the pixelized galaxy data on the sky properly taking into
account the covariances due to the shot noise and the intrinsic galaxy
clustering contamination as well as the partial sky coverage. We applied the
method to the galaxy catalogs constructed from the Sloan Digital Sky Survey
(SDSS) Data Release 6 data. After constructing the four galaxy catalogs that
are different in the ranges of magnitudes and photometric redshifts to study
possible systematics, we found that the most robust sample against systematics
indicates no dipole anisotropy in the galaxy distribution. This finding is
consistent with the expectation from the concordance Lambda-dominated cold dark
matter model. Finally we argue that an almost full-sky galaxy survey such as
LSST may allow for a significant detection of the aberration effect of the CMB
dipole having the precision of constraining the angular direction to ~ 20
degrees in radius. Assuming a hypothetical LSST galaxy survey, we find that
this method can confirm or reject the result implied from a stacked analysis of
the kinetic Sunyaev-Zel'dovich effect of X-ray luminous clusters in Kashlinsky
et al. (2008,2009) if the implied cosmic bulk flow is not extended out to the
horizon.Comment: 20 pages, 11 figures; 24 pages, added a couple of references and 2
figures. Revised version in response to the referee's comments. Resubmitted
to Phys. Rev.
CMBR Constraint on a Modified Chaplygin Gas Model
In this paper, a modified Chaplygin gas model of unifying dark energy and
dark matter with exotic equation of state
which can also explain the recent accelerated expansion of the universe is
investigated by the means of constraining the location of the peak of the CMBR
spectrum. We find that the result of CMBR measurements does not exclude the
nonzero value of parameter , but allows it in the range .Comment: 4 pages, 3 figure
The geodesic structure of the Schwarzschild Anti-de Sitter black hole
In the present work we found the geodesic structure of an AdS black hole. By
means of a detailed analyze of the corresponding effective potentials for
particles and photon, we found all the possible motions which are allowed by
the energy levels. Radial and non radial trajectories were exactly evaluated
for both geodesics. The founded orbits were plotted in order to have a direct
visualization of the allowed motions. We show that the geodesic structure of
this black hole presents new type of motions not allowed by the Schwarzschild
spacetime.Comment: 17 pages, 11 figure
Agegraphic Dark Energy Model in Non-Flat Universe: Statefinder Diagnostic and Analysis
We study the interacting agegraphic dark energy (ADE) model in non-flat
universe by means of statefinder diagnostic and analysis. First,
the evolution of EoS parameter () and deceleration parameter () in
terms of scale factor for interacting ADE model in non-flat universe are
calculated. Dependence of on the ADE model parameters and in
different spatial curvatures is investigated. We show that the evolution of
is dependent on the type of spatial curvature, beside of dependence on
parameters and . The accelerated expansion takes place sooner in
open universe and later in closed universe compare with flat universe. Then, we
plot the evolutionary trajectories of the interacting ADE model for different
values of the parameters and as well as for different
contributions of spatial curvature, in the statefinder parameters plane. In
addition to statefinder, we also investigate the ADE model in non-flat universe
with analysis.Comment: 20 pages, 4 figures, 2 tables, International Journal of Modern
Physics D accepte
- …