265 research outputs found

    Brownian motion of black holes in stellar systems with non-Maxwellian distribution for the stars field

    Get PDF
    A massive black hole at the center of a dense stellar system, such as a globular cluster or a galactic nucleus, is subject to a random walk due gravitational encounters with nearby stars. It behaves as a Brownian particle, since it is much more massive than the surrounding stars and moves much more slowly than they do. If the distribution function for the stellar velocities is Maxwellian, there is a exact equipartition of kinetic energy between the black hole and the stars in the stationary state. However, if the distribution function deviates from a Maxwellian form, the strict equipartition cannot be achieved. The deviation from equipartition is quantified in this work by applying the Tsallis q-distribution for the stellar velocities in a q-isothermal stellar system and in a generalized King model.Comment: Presented at XXVI Int. Astronomical Union General Assembly, Symp. 238, Prague, Czech Republic, Aug 21-25 200

    BEDT-TTF organic superconductors: the entangled role of phonons

    Full text link
    We calculate the lattice phonons and the electron-phonon coupling of the organic superconductor \kappa-(BEDT-TTF)_2 I_3, reproducing all available experimental data connected to phonon dynamics. Low-frequency intra-molecular vibrations are strongly mixed to lattice phonons. Both acoustic and optical phonons are appreciably coupled to electrons through the modulation of the hopping integrals (e-LP coupling). By comparing the results relevant to superconducting \kappa- and \beta-(BEDT-TTF)_2 I_3, we show that electron-phonon coupling is fundamental to the pairing mechanism. Both e-LP and electron-molecular vibration (e-MV) coupling are essential to reproduce the critical temperatures. The e-LP coupling is stronger, but e-MV is instrumental to increase the average phonon frequency.Comment: 4 pages, including 4 figures. Published version, with Ref. 17 corrected after publicatio

    Logarithmic diffusion and porous media equations: a unified description

    Full text link
    In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a lorentzian form, consequently this equation characterizes a super diffusion like a L\'evy kind. In addition is obtained an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized diffusion equation in fractal dimension. This unification is performed in the nonextensive thermostatistics context and increases the possibilities about the description of anomalous diffusive processes.Comment: 5 pages. To appear in Phys. Rev.

    Correlation gap in the optical spectra of the two-dimensional organic metal (BEDT-TTF)_4[Ni(dto)_2]

    Full text link
    Optical reflection measurements within the highly conducting (a,b)-plane of the organic metal (BEDT-TTF)_4[Ni(dto)_2] reveal the gradual development of a sharp feature at around 200 cm as the temperature is reduced below 150 K. Below this frequency a narrow Drude-like response is observed which accounts for the metallic behavior. Since de Haas-von Alphen oscillations at low temperatures confirm band structure calculations of bands crossing the Fermi energy, we assign the observed behavior to a two-dimensional metallic state in the proximity of a correlation induced metal-insulator transition.Comment: 4 pages, 2 figure

    Phonon anomalies due to strong electronic correlations in layered organic metals

    Get PDF
    We show how the coupling between the phonons and electrons in a strongly correlated metal can result in phonon frequencies which have a non-monotonic temperature dependence. Dynamical mean-field theory is used to study the Hubbard-Holstein model that describes the \kappa-(BEDT-TTF)_2 X family of superconducting molecular crystals. The crossover with increasing temperature from a Fermi liquid to a bad metal produces phonon anomalies that are consistent with recent Raman scattering and acoustic experiments.Comment: 6 pages, 3 eps figure

    Nonlinear equation for anomalous diffusion: unified power-law and stretched exponential exact solution

    Full text link
    The nonlinear diffusion equation ρt=DΔ~ρν\frac{\partial \rho}{\partial t}=D \tilde{\Delta} \rho^\nu is analyzed here, where Δ~1rd1rrd1θr\tilde{\Delta}\equiv \frac{1}{r^{d-1}}\frac{\partial}{\partial r} r^{d-1-\theta} \frac{\partial}{\partial r}, and dd, θ\theta and ν\nu are real parameters. This equation unifies the anomalous diffusion equation on fractals (ν=1\nu =1) and the spherical anomalous diffusion for porous media (θ=0\theta=0). Exact point-source solution is obtained, enabling us to describe a large class of subdiffusion (θ>(1ν)d\theta > (1-\nu)d), normal diffusion (θ=(1ν)d\theta= (1-\nu)d) and superdiffusion (θ<(1ν)d\theta < (1-\nu)d). Furthermore, a thermostatistical basis for this solution is given from the maximum entropic principle applied to the Tsallis entropy.Comment: 3 pages, 2 eps figure

    Thermal Conductivity of superconducting (TMTSF)_2ClO_4: evidence for a nodeless gap

    Full text link
    We report on the first measurements of thermal conductivity in the superconducting state of (TMTSF)_2ClO_4. The electronic contribution to heat transport is found to decrease rapidly below T_c, indicating the absence of low-energy electronic excitations. We argue that this result provides strong evidence for a nodeless superconducting gap function but does not exclude a possible unconventional order parameter.Comment: 4 pages including 4 figures, submitted to Phys. Rev. Let

    Anti-de Sitter curvature radius constrained by quasars in brane-world scenarios

    Full text link
    This paper is intended to investigate the luminosity due to accretion of gas in supermassive black holes (SMBHs) in the center of quasars, using a brane-world scenario naturally endowed with extra dimensions, whereon theories formulated introduce corrections in the field equations at high energies. SMBHs possess the necessary highly energetic environment for the introduction of these corrections, which are shown to produce small deviations in all SMBH properties and, consequentely, corrections in the accretion theory that supports quasars radiative processes. The radiative flux observed from quasars indicates these deviations, from which the magnitude of the AdS5_5 bulk curvature radius, and consequently the extra dimension compactification radius is estimated.Comment: 11 pages, RevTeX, Eq.(2) and (3) expanded, and comments thereon update
    corecore