9 research outputs found

    Fibronectin cues during somite formation

    Get PDF
    Tese de doutoramento, Biologia (Biologia do Desenvolvimento), Universidade de Lisboa, Faculdade de Ciências, 2013The formation of the string of individual somite segments is a hallmark morphogenetic event during embryonic development, establishing the basic foundations of the vertebrate body. Somites pinch off from the mesenchymal presomitic mesoderm on either side of the neural tube, as epithelial blocks of cells, with a strict chronological sequence in a rostral to caudal fashion. In recent decades, the intense scrutiny and investigation on the temporal and spatial regulation of somitogenesis has produced a fascinating picture on the mechanisms underlying vertebrate embryo segmentation. However, our knowledge regarding the cellular performance involved in the detachment and individualization of the somitic segment remains quite obscure. The extracellular matrix molecule fibronectin has been implicated in somitogenesis since its discovery and its role was reinforced with the genetic deletion in the mouse embryo, but how fibronectin participates in the formation of the epithelial somite is still unclear. The aim of this thesis is to investigate how the interaction between the presomitic mesoderm cells and the fibronectin matrix contributes to the detachment of the somite sphere of epithelial cells, using the chicken embryo as a model. In Chapter 2 we first resolve the disputed role of the ectoderm overlying the presomitic mesoderm, showing that is serves as a source of fibronectin, which becomes assembled as a fibrillar matrix around the presomitic mesoderm, supporting somite formation. Through microsurgical explant collection and culture we show for the first time that a presomitic mesoderm isolated from all surrounding tissues can undergo somitogenesis provided that the original fibrillar fibronectin sleeve is preserved. In Chapter 3 and 4 we adopt a three-dimensional view of somite formation, evaluating in detail the cellular rearrangements underlying somitogenesis (Chapter 3) and the architecture of the fibronectin matrix along the full extent of the presomitic mesoderm and somites (Chapter 4). The combination of time-lapsed movies and explant culture analysis presented in Chapter 3 revealed that intersomitic cleft formation is mostly driven by the cells in the rostral border and that mesenchymal cells from the central locations contribute to the outer epithelial layer of somites. The high-resolution analysis of the extracellular matrix displayed in Chapter 4 revealed that an increased fibrillar complexity of the fibronectin matrix accompanies presomitic mesoderm maturation, preluding somite formation. We co-analyzed the distribution of the epithelium-associated extracellular molecule laminin and found, together with our observations in Chapter 2 that it does not contribute to the epithelialization of the somite. The thorough analysis in this Chapter is also one of the few detailed evaluations of extracellular matrix component assembly in a complex three-dimensional in vivo tissue. In the final chapter, Chapter 5, we investigate the role of cell tension, elicited by the cell attachment to its milieu, in the epithelialization and detachment of somites. The epithelialization process is abrogated by specific cell tension inhibitors, but already formed somites can partially maintain their epithelial organization. Remarkably, these inhibitors also interfere with the spatial regulation of Meso1 expression, a key gene underlying both the location of the future somite boundary and the establishment of the rostral-caudal polarity of the somite segment. In combination with the previous chapters, these results indicate that the assembly of a fibronectin matrix along the caudal-rostral axis of the presomitic maturation is a part of the maturation process: the increased fibrillar complexity provides the tensional support for both the cell rearrangements essential for somite detachment, epithelialization of the peripheral cells and apparently also as a spatial cue influencing the developmental programs of the presomitic mesoderm. Overall, this thesis demonstrates the prominent role of the fibronectin extracellular matrix during somitogenesis in the chicken embryo. The results obtained highlight that the extracellular matrix dimension is a worthy player during embryonic development.O esquema geral do desenvolvimento embrionário dos Vertebrados é marcado por duas conspícuas fileiras de elementos repetidos, situadas em ambos os lados do tubo neural, localizado numa posição axial. Estas estruturas repetidas, chamadas sómitos, vão originar os elementos ósseos que compõem o esqueleto axial, as vértebras, de onde deriva o nome deste sub-filo. Os sómitos dão também origem à musculatura esquelética do tronco e membros, assim como à derme das costas, entre outros tecidos. Os sómitos são originários de um tecido mesodérmico não-segmentado, de forma cilíndrica, situado em ambos os lados do tubo/placa neural, tecido esse que é denominado mesoderme pré-somítica (MPS). Em conjunto, os sómitos e as MPS compõem a mesoderme paraxial (i.e. a mesoderme imediatamente lateral ao eixo central). Cada par de sómitos destaca-se, de um modo temporal e espacialmente regulado, da extremidade mais rostral da MPS, originando um gradiente caudo-rostral de crescente maturação somítica. Ao mesmo tempo, o embrião continua a alongar-se no sentido caudal, e a gastrulação que decorre no botão caudal acrescenta celulas à MPS mesenquimatosa A formação de cada sómito epitelial é acompanhada por um processo de transição mesênquima epitélio, resultando na formação de uma esfera de células epiteliais rodeando um núcleo de células mesenquimatosas. A formação dos sómitos não só é importante para a formação das vértebras e outros tecidos que deles directamente derivam, mas também são responsáveis pela imposição do arranjo segmentado do sistema nervoso periférico. Embora a formação dos sómitos intrigue observadores desde tempos longínquos, as mais recentes décadas foram fundamentais para elucidar alguns dos aspectos mais intrigantes deste fenómeno. Dada a importância estrutural dos sómitos em todo o desenvolvimento embrionário subsequente, a estrita regulação temporal e espacial da somitogénese foi alvo de um interesse superior, que culminou com a descoberta da primeira evidência da regulação temporal. Genes com um comportamento transcripcional cíclico, adequadamente denominados “genes cíclicos”, dos quais Hairy1 foi o primeiro descrito, evidenciaram a existência de um mecanismo metrónomo (oscilador), essencial para a regulação temporal da somitogénese em embriões de galinha. Posteriormente foi descoberta a existência de um gradiente de maturação caudo-rostral ao longo da MPS que balizava, a um nível hipotético do gradiente, a actividade do oscilador, transformando-a num localização espacial na MPS, coincidente com a formação de um segmento somítico. Estas evidências despoletaram toda uma nova compreensão do fenómeno, não só do ponto de vista conceptual como mecanístico, não obstante o mecanismo de oscilador-gradiente para a produção regular de segmentos já tivesse sido postulado anteriormente por modelos matemáticos. Embora nos dias de hoje já tenhamos uma ideia bastante robusta de como a somitogénese é regulada, ainda são numerosas as questões basilares cujas respostas ainda permanecem pouco claras. Nesta tese pretendemos abordar o fenómeno da somitogénese num dos aspectos que tem sido mais negligenciado: a formação morfológica de estruturas epiteliais, individuais, discretas – os sómitos -, a partir de um tecido mesenquimatoso, uniforme e não-segmentado – a MPS. Durante a somitogénese as células da MPS rostral rearranjam-se de um modo rápido e dramático, formando uma fenda transversal, e destacando-se da MPS remanescente sob a forma de uma esfera epitelial. A formação de sómitos é um fenómeno extremamente robusto, ocorrendo mesmo quando genes envolvidos na regulação espácio-temporal são geneticamente removidos. Embora os mecanismos envolvidos na formação dos sómitos ainda sejam pouco claros, a investigação de outros fenómenos morfogenéticos embrionários têm revelado que o seu enquadramento extracelular é essencial na orquestração dos comportamentos celulares subjacentes à criação de novas formas. Nesta tese procurámos aprofundar a compreensão da formação dos sómitos no embrião de galinha, explorando a interacção entre as células das MPS e os componentes não-celulares presentes no espaço extracelular, conjuntamente denominados matriz extracelular (MEC). Em particular, investigámos o papel da fibronectina, uma glicoproteína da MEC, durante a formação do sómito epitelial. De entre as várias moléculas que compõem a MEC, a fibronectina encontra-se presente de um modo ubíquo durante a embriogénese mas também em tecidos adultos. A fibronectina é polimerizada numa complexa rede de fibrilhas num processo totalmente dependente de uma acção celular. Décadas de investigação em células em cultura revelaram que a fibronectina é secretada como um dímero numa conformação compacta, e a molécula é estendida através de ligações às células, expondo locais essenciais para a polimerização. A fibronectina é uma molécula de adesão por excelência, regularmente associada a fenómenos de fixação, num contexto de migração e dispersão celular. Assim como a fibronectina, outros componentes da MEC não só albergam passivamente as células, mas também desempenham um papel instrutivo na regulação do comportamento celular. A laminina, uma outra glicoproteína da MEC estudada nesta tese, é um componente essencial da membrana basal, uma MEC especializada, crítica para a formação e manutenção de tecidos epiteliais. As células obtêm a informação sobre a MEC circundante através de receptores transmembranares denominados integrinas. Estes receptores heterodiméricos são transductores de sinais importantíssimos, que, embora não sejam transmissores de sinais per se, interagem com inúmeras moléculas de variadas vias sinalizadoras. As integrinas servem também como o elo de ligação físico entre o cito-esqueleto das células e a MEC, participando assim não só na avaliação bioquímica da MEC, como também das suas propriedades mecânicas. A interacção célula-MEC na regulação do comportamento celular tem sido alvo de investigação particularmente em células em cultura e num contexto patológico, sendo que o seu papel no desenvolvimento embrionário ainda não mereceu a devida atenção. Embora a deleção de vários genes para componentes da MEC tenham demonstrado claramente o seu papel fundamental nos estádios iniciais de desenvolvimento, os pormenores do papel da respectiva MEC em fenómenos mais particulares carecem de explicação. Notoriamente, a deleção do gene que codifica a fibronectina resulta numa letalidade embrionária precoce, e na completa ausência de sómitos embora a mesoderme paraxial seja formada normalmente, um fenótipo singular de entre as inúmeras deleções genéticas afectando a somitogénese. No entanto, e apesar de a fibronectina ter sido implicada na somitogénese noutros vertebrados-modelo, pouco se sabe do papel da matriz de fibronectina neste evento morfogenético. Numa primeira fase, esta tese pretendeu resolver uma série de observações respeitantes à capacidade da MPS de formar sómitos na presença ou ausência de tecidos circundantes, nomeadamente, a ectoderme, colocada dorsalmente à mesoderme paraxial. No capítulo 2 desta tese evidenciamos que a somitogénese ocorria em MPS isoladas de todos os tecidos circundantes, ao contrário das numerosas observações anteriores, mas apenas se a matriz de fibronectina original for mantida. Neste capítulo demonstramos que a ectoderme serve a formação de sómitos como um parceiro na formação da matriz de fibronectina e não como uma fonte de factores parácrinos. Em combinação com o capítulo 4, esta tese revela que a ectoderme é uma importante fonte de produção de fibronectina, e que conformações globulares de fibronectina estão localizadas no seu lado basal. Este capítulo 2 não só clarifica a função da ectoderme, indicando como certas idiossincrasias metodológicas resultaram nas observações anteriores, como também reforça a noção da autonomia do programa genético na MPS mais rostral. Dado a complexidade de um tecido embrionário que se estende em todas as direccões, no capítulo seguinte investigamos o fenómeno da formação da fenda intersomitica de um ponto de vista tridimensional. Aprimorando a visualização in vivo e em “time-lapse” da somitogénese, constatámos a complexidade dos movimentos celulares envolvidos na formação da fenda e no rearranjo de um novo sómito. Neste capítulo 3 foi dado um enorme passo na compreensão da somitogénese numa perspectiva tri-dimensional de primeira linha. Esta nova perspectiva e a respectiva melhoria tecnológica e metodológica derivados deste trabalho possibilitaram e levaram a uma avaliação detalhada da ECM explanada no capítulo seguinte. No capítulo 4, foi feito um extenso mapeamento da MEC ao longo do eixo caudal-rostral da mesoderme paraxial. Esta abordagem não só acompanhou as alterações da matriz de fibronectina e laminina durante o desenvolvimento deste tecido, como também evidenciou pela primeira vez, os passos iniciais na formação in vivo e em 3D destas matrizes. Uma vez que na sua extremidade caudal, a MPS mesenquimatosa é o resultado directo da gastrulação, onde a MEC original é degradada, o eixo caudal-rostral reflecte a formação de novo da matriz de fibronectina e laminina. Ao longo da mesoderme paraxial, a fibronectina torna-se crescentemente mais densa e fibrilar, mas após a formação do sómito a laminina passa a ocupar o espaço junto das células e a matriz de fibronectina fica claramente exterior à membrana basal. Neste capítulo reforçamos a importância de uma matriz densa e fibrilar de fibronectina durante a formação do sómito epitelial, tal como demonstrado no capítulo 2, mas não da laminina, quase ausente. Adicionalmente, o acompanhamento da matriz de laminina revelou que a sua montagem ocorre de um modo fragmentado e disperso. Inesperadamente, observámos que os fragmentos de laminina crescem e coalescem, mas sem nunca formarem uma membrana basal contínua rodeando o sómito epitelial ou o seu derivado epitelial, o dermomiótomo. No capítulo experimental final (capítulo 5) investigamos o papel da tensão celular na somitogénese, assumindo o princípio provável que a MEC rodeando a mesoderme paraxial serve como um suporte físico para as células da MPS e dos sómitos. Neste capítulo foram utilizados inibidores de tensão celular, prevenindo a capacidade das células não só de usarem mecanicamente a MEC, como de percepcionar as características mecânicas da MEC. Este trabalho revelou que o carácter epitelial dos sómitos normalmente surge imediatamente após o seu descolamento da MPS rostral, reforçando a integridade do segmento. Na presença de inibidores da tensão celular, o carácter epitelial em aquisição é perdido, mas os sómitos epiteliais mantêm pelo menos parcialmente a sua forma, demonstrando alguma robustez. A presença de inibidores de tensão, em particular, inibidores de vias próximas da sinalização mediada por integrinas, alteraram também o programa genético na MPS, revelando uma possível regulação mecanosensitiva da resposta aos gradientes subjacentes à determinação da MPS rostral. Em conjunto, esta tese evidenciou que a contínua montagem de uma matriz de fibronectina, numa conjugação de esforços pela ectoderme e pela MPS, acompanha o desenvolvimento da mesoderme paraxial, levando ao estabelecimento de uma matriz madura, capaz de suportar a formação de sómitos e de manter os segmentos separados. Mostramos também que a complexa orquestração dos movimentos celulares durante a somitogénese requer um sinal polarizador da fibronectina (provavelmente com um valor mecânico), efectuador da epitelização do sómito e no processo separador da fenda intersomítica. São lançadas também hipóteses de como a matriz de fibronectina se integra noutros mecanismos durante a formação da fenda, e na regulação tenso- mecânica da integração dos gradientes que definem espacialmente a MPS determinada mais rostral.Fundação para a Ciência e a Tecnologia (FCT, SFRH/BD/37423/207, projectos PPCDT/BIA-BCM/59201/2004, PTDC/SAU-OBD/103771/2008) e European Union FP6 Network of Excellence ‘Cells into Organs’ (2004-2009

    Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm

    Get PDF
    The absence of ectoderm impairs somite formation in cultured presomitic mesoderm (PSM) explants, suggesting that an ectoderm-derived signal is essential for somitogenesis. Here we show in chick that the standard enzymatic treatments used for explant isolation destroy the fibronectin matrix surrounding the anterior PSM, which fails to form somites when cultured for 6 hours. By contrast, explants isolated with collagenase retain their fibronectin matrix and form somites under identical culture conditions. The additional presence of ectoderm enhances somite formation, whereas endoderm has no effect. Furthermore, we show that pancreatin-isolated PSM explants cultured in fibronectin-supplemented medium, form significantly more somites than control explants. Interestingly, ectoderm is the major producer of fibronectin (Fn1) transcripts, whereas all but the anterior-most region of the PSM expresses the fibronectin assembly receptor, integrin alpha5 (Itga5). We thus propose that the ectoderm-derived fibronectin is assembled by mesodermal alpha5beta1 integrin on the surface of the PSM. Finally, we demonstrate that inhibition of fibronectin fibrillogenesis in explants with ectoderm abrogates somitogenesis. We conclude that a fibronectin matrix is essential for morphological somite formation and that a major, previously unrecognised role of ectoderm in somitogenesis is the synthesis of fibronectin.Fundação para a Ciência e a Tecnologia (FCT)/FEDER projects POCTI/BCI/40754/2001 and POCI/BIA-BCM/59201/2004 and the FP6/EU Network of Excellence ‘Cells into Organs’ of which P.R., C.L., R.P.A., G.R., I.P. and S.T. are members. L.C. was supported by the European Social Fund contract 1/3.2/PRODEP/2001. R.P.A. was supported by FCT (SFRH/BPD/9432/2002)

    Cell–fibronectin interactions and actomyosin contractility regulate the segmentation clock and spatio-temporal somite cleft formation during chick embryo somitogenesis

    Get PDF
    Fibronectin is essential for somite formation in the vertebrate embryo. Fibronectin matrix assembly starts as cells emerge from the primitive streak and ingress in the unsegmented presomitic mesoderm (PSM). PSM cells undergo cyclic waves of segmentation clock gene expression, followed by Notch-dependent upregulation of meso1 in the rostral PSM which induces somite cleft formation. However, the relevance of the fibronectin matrix for these molecular processes remains unknown. Here, we assessed the role of the PSM fibronectin matrix in the spatio-temporal regulation of chick embryo somitogenesis by perturbing (1) extracellular fibronectin matrix assembly, (2) integrin–fibronectin binding, (3) Rho-associated protein kinase (ROCK) activity and (4) non-muscle myosin II (NM II) function. We found that integrin–fibronectin engagement and NM II activity are required for cell polarization in the nascent somite. All treatments resulted in defective somitic clefts and significantly perturbed meso1 and segmentation clock gene expression in the PSM. Importantly, inhibition of actomyosin-mediated contractility increased the period of hairy1/hes4 oscillations from 90 to 120 min. Together, our work strongly suggests that the fibronectin–integrin–ROCK–NM II axis regulates segmentation clock dynamics and dictates the spatio-temporal localization of somitic clefts.info:eu-repo/semantics/publishedVersio

    Dynamic 3D Cell Rearrangements Guided by a Fibronectin Matrix Underlie Somitogenesis

    Get PDF
    Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis

    Modelling human rostro-caudal neural patterning with a microfluidic morphogenic gradient

    No full text
    The study of biological mechanisms involved in human fetal brain development requires suitable models. To date, most findings have been acquired from animal models that fail to account for human-specific developmental traits. To counteract this limitation, a novel in vitro model is proposed where human pluripotent stem cells are differentiated into a coherent fetal brain tissue in a gradient forming microfluidic system. Stainings show that the model can be used to investigate the patterning, an important developmental event, of stem cells into forebrain, midbrain and hindbrain. In conclusion, this model could provide a new platform for studying human-specific brain development

    Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease

    Get PDF
    Stem cell treatments for neurodegenerative diseases are expected to reach clinical trials soon. Most of the approaches currently under development involve transplantation of immature progenitors that subsequently undergo phenotypic and functional maturation in vivo, and predicting the long-term graft outcome already at the progenitor stage remains a challenge. Here, we took an unbiased approach to identify predictive markers expressed in dopamine neuron progenitors that correlate with graft outcome in an animal model of Parkinson's disease through gene expression analysis of >30 batches of grafted human embryonic stem cell (hESC)-derived progenitors. We found that many of the commonly used markers did not accurately predict in vivo subtype-specific maturation. Instead, we identified a specific set of markers associated with the caudal midbrain that correlate with high dopaminergic yield after transplantation in vivo. Using these markers, we developed a good manufacturing practice (GMP) differentiation protocol for highly efficient and reproducible production of transplantable dopamine progenitors from hESCs

    Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient

    No full text
    The study of brain development in humans is limited by the lack of tissue samples and suitable in vitro models. Here, we model early human neural tube development using human embryonic stem cells cultured in a microfluidic device. The approach, named microfluidic-controlled stem cell regionalization (MiSTR), exposes pluripotent stem cells to signaling gradients that mimic developmental patterning. Using a WNT-activating gradient, we generated a neural tissue exhibiting progressive caudalization from forebrain to midbrain to hindbrain, including formation of isthmic organizer characteristics. Single-cell transcriptomics revealed that rostro-caudal organization was already established at 24 h of differentiation, and that the first markers of a neural-specific transcription program emerged in the rostral cells at 48 h. The transcriptomic hallmarks of rostro-caudal organization recapitulated gene expression patterns of the early rostro-caudal neural plate in mouse embryos. Thus, MiSTR will facilitate research on the factors and processes underlying rostro-caudal neural tube patterning

    Disruption of the PDZ domain-binding motif of the dopamine transporter uniquely alters nanoscale distribution, dopamine homeostasis, and reward motivation

    No full text
    The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain–binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors
    corecore