16,186 research outputs found

    Asymptotic safety in higher-derivative gravity

    Full text link
    We study the non-perturbative renormalization group flow of higher-derivative gravity employing functional renormalization group techniques. The non-perturbative contributions to the β\beta-functions shift the known perturbative ultraviolet fixed point into a non-trivial fixed point with three UV-attractive and one UV-repulsive eigendirections, consistent with the asymptotic safety conjecture of gravity. The implication of this transition on the unitarity problem, typically haunting higher-derivative gravity theories, is discussed.Comment: 8 pages; 1 figure; revised versio

    The atomic orbitals of the topological atom

    Get PDF
    The effective atomic orbitals have been realized in the framework of Bader’s atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure

    Precise analysis of pion-pion scattering data from Roy equations and forward dispersion relations

    Get PDF
    We review our recent analysis of pion-pion scattering data in terms of Roy equations and Forward Dispersion Relations, and present some preliminary results in terms of a new set of once-subtracted coupled equations for partial waves. The first analysis consists of independent fits to the different pion-pion channels that satisfies rather well the dispersive representation. In the second analysis we constrain the fit with the dispersion relations. The latter provides a very precise and model independent description of data using just analyticity, causality and crossing.Comment: 6 pages, two figures. To appear in the proceedings of the Workshop on Scalar Mesons and Related Topics, Lisbon, Portugal, 11-16 Feb 200

    Hospedeiros alternativos para Pantoea ananatis, agente causal da mancha branca do milho.

    Get PDF
    Edição dos resumos do 44º Congresso Brasileiro de Fitopatologia, 2011, Bento Gonçalves. Resumo 1379

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar
    corecore